Triplet–triplet annihilation photon upconversion-mediated photochemical reactions

Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019). This letter presents the first demonstrations of near-infrared light-driven photoredox catalysis of multiple reaction types via triplet–triplet annihilation upconversion.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, W. & Farokhzad, O. C. Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122, 5405–5407 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Biomed. Eng. 1, 60–78 (2023).

Google Scholar 

Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabanero, D. C., Nguyen, J. A., Cazin, C. S. J., Nolan, S. P. & Rovis, T. Deep red to near-infrared light-controlled ruthenium-catalyzed olefin metathesis. ACS Catal. 13, 4384–4390 (2023).

Article  CAS  Google Scholar 

Wang, Y. C. et al. Recent progress in near-infrared light-harvesting nanosystems for photocatalytic applications. Appl. Catal. A Gen. 644, 118836 (2022).

Article  CAS  Google Scholar 

Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

Article  CAS  Google Scholar 

Richards, B. S., Hudry, D., Busko, D., Turshatov, A. & Howard, I. A. Photon upconversion for photovoltaics and photocatalysis: a critical review. Chem. Rev. 121, 9165–9195 (2021).

Article  CAS  PubMed  Google Scholar 

Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

Article  CAS  PubMed  Google Scholar 

Cybularczyk-Cecotka, M., Szczepanik, J. & Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 3, 872–886 (2020).

Article  CAS  Google Scholar 

Kim, H. M. & Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015).

Article  CAS  PubMed  Google Scholar 

Bando, Y., Wenzel, M. & Yuste, R. Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo. Nat. Commun. 12, 7229 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lederhose, P. et al. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 55, 12195–12199 (2016).

Article  CAS  Google Scholar 

Rocheva, V. V. et al. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 8, 3663 (2018).

Article  PubMed  PubMed Central  Google Scholar 

He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife 4, e10024 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

Article  CAS  PubMed  Google Scholar 

Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong, J. et al. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Biosens. Bioelectron. 180, 113139 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, X., Yan, C. H. & Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015).

Article  CAS  PubMed  Google Scholar 

Dong, H. et al. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev. 115, 10725–10815 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng, L., Huang, L., Han, J. & Han, G. Enhancing triplet–triplet annihilation upconversion: from molecular design to present applications. Acc. Chem. Res. 55, 2604–2615 (2022). This review reveals and summarizes the design rules of efficient triplet–triplet annihilation upconversion and its applications in emerging fields.

Article  CAS  PubMed  Google Scholar 

Bharmoria, P., Bildirir, H. & Moth-Poulsen, K. Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 49, 6529–6554 (2020). This review systematically summarizes current state of the near-infrared triplet–triplet annihilation upconversion system as well as its challenges.

Article  CAS  PubMed  Google Scholar 

Gao, C. et al. Application of triplet–triplet annihilation upconversion in organic optoelectronic devices: advances and perspectives. Adv. Mater. 33, 2100704 (2021).

Article  CAS  Google Scholar 

Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

Article  CAS  Google Scholar 

Zhao, J., Ji, S. & Guo, H. Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1, 937–950 (2011).

Article  CAS  Google Scholar 

Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

Article  CAS  PubMed  Google Scholar 

Wu, Y., Li, S., Chen, Y., He, W. & Guo, Z. Recent advances in noble metal complex based photodynamic therapy. Chem. Sci. 13, 5085–5106 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, W., Zhang, R., Zhang, X.-F., Liu, J. & Luo, L. Halogenated BODIPY photosensitizers: photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Spectrochim. Acta A Mol. Biomol. 272, 120965 (2022).

Article  CAS  Google Scholar 

Niihori, Y., Wada, Y. & Mitsui, M. Single platinum atom doping to silver clusters enables near-infrared-to-blue photon upconversion. Angew. Chem. Int. Ed. 60, 2822–2827 (2021). This is the first example of a triplet–triplet annihilation upconversion system using noble metal clusters as photosensitizers.

Article  CAS  Google Scholar 

Arima, D. & Mitsui, M. Structurally flexible Au–Cu alloy nanoclusters enabling efficient triplet sensitization and photon upconversion. J. Am. Chem. Soc. 145, 6994–7004 (2023).

Article  CAS  PubMed  Google Scholar 

McCusker, C. E. & Castellano, F. N. Efficient visible to near-UV photochemical upconversion sensitized by a long lifetime Cu(I) MLCT complex. Inorg. Chem. 54, 6035–6042 (2015).

Article  CAS  PubMed  Google Scholar 

Kübler, J. A., Pfund, B. & Wenger, O. S. Zinc(II) complexes with triplet charge-transfer excited states enabling energy-transfer catalysis, photoinduced electron transfer, and upconversion. JACS Au 2, 2367–2380 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Yang, M., Sheykhi, S., Zhang, Y., Milsmann, C. & Castellano, F. N. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem. Sci. 12, 9069–9077 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Efficient triplet–triplet annihilation upconversion sensitized by a chromium(III) complex via an underexplored energy transfer mechanism. Angew. Chem. Int. Ed. 61, e202202238 (2022).

Article  CAS  Google Scholar 

Olesund, A. et al. Approaching the spin-statistical limit in visible-to-ultraviolet photon upconversion. J. Am. Chem. Soc. 144, 3706–3716 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, X. et al. Manipulating exciton dynamics toward simultaneous high-efficiency narrowband electroluminescence and photon upconversion by a selenium-incorporated multiresonance delayed fluorescence emitter. J. Am. Chem. Soc. 144, 22976–22984 (2022).

Article  CAS  PubMed  Google Scholar 

Li, J.-K., Zhang, M.-Y., Zeng, L., Huang, L. & Wang, X.-Y. NIR-absorbing B,N-heteroarene as photosensitizer for high-performance NIR-to-blue triplet–triplet annihilation upconversion. Angew. Chem. Int. Ed. 62, e202303093 (2023). This is the first example of a triplet–triplet annihilation upconversion system with a thermally activated delayed fluorescent molecule as a near-infrared light-absorbing photosensitizer.

Article  CAS  Google Scholar 

Comments (0)

No login
gif