Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries

Zhong, H. X.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J. C.; Ge, J.; Wang, M. C.; Liao, Z. Q.; Makarov, D.; Zschech, E.; Brunner, E. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

Article  CAS  Google Scholar 

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

Article  CAS  PubMed  Google Scholar 

Li, L. G.; Huang, Y.; Li, Y. G. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2020, 2, 100024.

Article  Google Scholar 

Han, N.; Sun, M. Z.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B. L.; Li, Y. G. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv. Mater. 2021, 33, 2005821.

Article  CAS  Google Scholar 

Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

Article  CAS  Google Scholar 

Ye, R. Z.; Zhu, J. Y.; Tong, Y.; Feng, D. M.; Chen, P. Z. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate. J. Energy Chem. 2023, 83, 180–188.

Article  CAS  Google Scholar 

Ye, R. Z.; Tong, Y.; Feng, D. M.; Chen, P. Z. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate. J. Mater. Chem. A 2023, 11, 4691–4702.

Article  CAS  Google Scholar 

Ding, P.; Zhao, H. T.; Li, T. S.; Luo, Y. S.; Fan, G. Y.; Chen, G.; Gao, S. Y.; Shi, X. F.; Lu, S. Y.; Sun, X. P. Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 2020, 8, 21947–21960.

Article  CAS  Google Scholar 

Peng, C.; Yang, S. T.; Luo, G.; Yan, S.; Chen, N.; Zhang, J. B.; Chen, Y. S.; Wang, X. C.; Wang, Z. Q.; Wei, W. et al. Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth (110) facets modified with sulfur-anchored sodium cations. Chem 2023, 9, 2830–2840.

Article  CAS  Google Scholar 

Blom, M. J. W.; van Swaaij, W. P. M.; Mul, G.; Kersten, S. R. A. Mechanism and micro kinetic model for electroreduction of CO2 on Pd/C: The role of different palladium hydride phases. ACS Catal. 2021, 11, 6883–6891.

Article  CAS  Google Scholar 

Luo, Y. Q.; Zhang, K. F.; Li, Y. G.; Wang, Y. H. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313–1332.

Article  CAS  Google Scholar 

Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

Article  CAS  Google Scholar 

Zhang, X. L.; Guo, S. X.; Gandionco, K. A.; Bond, A. M.; Zhang, J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design. Mater. Today Adv. 2020, 7, 100074.

Article  Google Scholar 

Mu, Z. Y.; Han, N.; Xu, D.; Tian, B. L.; Wang, F. Y.; Wang, Y. Q.; Sun, Y. M.; Liu, C.; Zhang, P. K.; Wu, X. J. et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat. Commun. 2022, 13, 6911.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H. Q.; Xiao, N.; Wang, Y. W.; Liu, C.; Zhang, S. J.; Zhang, H. H.; Bai, J. P.; Xiao, J.; Li, C.; Guo, Z. et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode. J. Mater. Chem. A 2020, 8, 1779–1786.

Article  CAS  Google Scholar 

Li, L.; Ozden, A.; Guo, S. Y.; Garcia de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, W. T.; Wen, L. S.; Gao, J.; Chen, S. Z.; He, Z. Q.; Wang, D.; Shen, Y.; Song, S. Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO2 electroreduction to formate. Chem. Commun. 2021, 57, 7418–7421.

Article  CAS  Google Scholar 

Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, D. F.; Xu, Y.; Wang, H. X.; Qiu, X. Q. Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO2 to formate. Chem. Commun. 2022, 58, 3007–3010.

Article  CAS  Google Scholar 

Sun, Y. D.; Wang, F. F.; Liu, F.; Zhang, S. K.; Zhao, S. L.; Chen, J.; Huang, Y.; Liu, X. J.; Wu, Y. P.; Chen, Y. H. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu. ACS Appl. Mater. Interfaces 2022, 14, 8896–8905.

Article  CAS  PubMed  Google Scholar 

Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. H.; Dai, S.; Zhu, H. Y. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 2016, 6, 6255–6264.

Article  CAS  Google Scholar 

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

Article  CAS  Google Scholar 

Wei, H. L.; Tan, A. D.; Xiang, Z. P.; Zhang, J.; Piao, J. H.; Liang, Z. X.; Wan, K.; Fu, Z. Y. Modulating p-orbital of bismuth nanosheet by nickel doping for electrocatalytic carbon dioxide reduction reaction. ChemSusChem 2022, 15, e202200752.

Article  CAS  PubMed  Google Scholar 

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

Article  CAS  Google Scholar 

Pang, R. C.; Tian, P. F.; Jiang, H. L.; Zhu, M. H.; Su, X. Z.; Wang, Y.; Yang, X. L.; Zhu, Y. H.; Song, L.; Li, C. Z. Tracking structural evolution: Operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Natl. Sci. Rev. 2021, 8, nwaa187.

Article  CAS  PubMed  Google Scholar 

Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ 2022, 306, 121135.

Article  CAS  Google Scholar 

Ma, X.; Tian, J. J.; Wang, M.; Shen, M.; Zhang, L. X. Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO2 reduction electrocatalyst in a wide potential range. J. Colloid Interface Sci. 2022, 608, 1676–1684.

Article  CAS  PubMed  Google Scholar 

Jiang, Y. F.; Zhang, X. D.; Xu, D. F.; Li, W. Z.; Liu, M.; Qiu, X. Q. Efficient three-phase electrocatalytic CO2 reduction to formate on superhydrophobic Bi–C interfaces. Chem. Commun. 2021, 57, 6011–6014.

Article  CAS  Google Scholar 

Wang, M.; Liu, S.; Chen, B.; Huang, M. J.; Peng, C. Co-regulation of intermediate binding and water activation in sulfur-doped bismuth nanosheets for electrocatalytic CO2 reduction to formate. Chem. Eng. J. 2023, 451, 139056.

Article  CAS  Google Scholar 

Zhang, G. X.; Zheng, X. L.; Cui, X. M.; Wang, J.; Liu, J. H.; Chen, J. F.; Xu, Q. Doping of vanadium into bismuth oxide nanoparticles for electrocatalytic CO2 reduction. ACS Appl. Nano Mater. 2022, 5, 15465–15472.

Article  CAS  Google Scholar 

Zhao, Y.; Liu, X. L.; Liu, Z. X.; Lin, X.; Lan, J.; Zhang, Y. L.; Lu, Y. R.; Peng, M.; Chan, T. S.; Tan, Y. W. Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 2021, 21, 6907–6913.

Article  CAS  PubMed  Google Scholar 

Cui, R. X.; Yuan, Q.; Zhang, C.; Yang, X.; Ji, Z. R.; Shi, Z. L.; Han, X. Q.; Wang, Y. Y.; Jiao, J. Q.; Lu, T. B. Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS Catal. 2022, 12, 11294–11300.

Article  CAS  Google Scholar 

Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.

Article  CAS  Google Scholar 

Mun, Y.; Lee, S.; Cho, A.; Kim, S.; Han, J. W.; Lee, J. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Appl. Catal. B: Environ. 2019, 246, 82–88.

Article  CAS  Google Scholar 

Xie, Q. X.; Larrazábal, G. O.; Ma, M.; Chorkendorff, I.; Seger, B.; Luo, J. S. Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. J. Energy Chem. 2021, 63, 278–284.

Article  CAS  Google Scholar 

Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2021, 60, 26233–26237.

Article  CAS 

Comments (0)

No login
gif