Z. Bai and Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloys Compd. 675, 325 (2016).
M. Thirumoorthi, S. Shek Dhavud, V. Ganesh, T.H. Al Abdulaal, I.S. Yahia, and D. Deivatamil, High responsivity n-ZnO/p-CuO heterojunction thin film synthesised by low-cost SILAR method for photodiode applications. Opt. Mater. 128, 112410 (2022).
M. Tlili, C. Nefzi, B. Alhalaili, C. Bouzidi, L. Ajili, N. Jebbari, R. Vidu, and N.T. Kamoun, Synthesis and characterization of MgO thin films obtained by spray technique for optoelectronic applications. Nanomaterials 11, 3076 (2021).
Article CAS PubMed PubMed Central Google Scholar
M. Bouzbib, M. El Marouani, and K. Sinkó, Effect of various additives on aluminum oxide thin films prepared by dip coating, thermal behavior, kinetics and optical properties. J. Eur. Opt. Soc. Rapid Publ. 17, 25 (2021).
S.S. Parui, N. Kumar, P. Tiwari, N. Tiwari, and R.N. Chauhan, Zinc oxide and cupric oxide based thin films for solar cell applications. Mater. Today Proc. 41, 233 (2021).
H. Çavuşoğlu, Evaluating the influence of polyethylene glycol as a surfactant on CdO films grown by SILAR method. J. Phys. Chem. Solids 124, 67 (2019).
H. Cavusoglu, Exploring the role of pH on the physical and optoelectronic attributes of nanostructured NiO thin films. J. Nanoelectron. Optoelectron. 14, 645 (2019).
H. Cavusoglu, Band-gap control of nanostructured CuO thin films using PEG as a surfactant. Eur. J. Sci. Technol. 13, 124 (2018).
W. Maeng, S.H. Lee, J.D. Kwon, J. Park, and J.S. Park, Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. Ceram. Int. 42, 5517 (2016).
P.V. Raghavendra, J.S. Bhat, and N.G. Deshpande, Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors. Superlattices Microstruct. 113, 754 (2018).
P. Horak, V. Bejsovec, J. Vacik, V. Lavrentiev, M. Vrnata, M. Kormunda, and S. Danis, Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors. Appl. Surf. Sci. 389, 751 (2016).
J. Zhang, Y. Zou, S. Eickelmann, C. Njel, H. Tobias, S. Ronneberger, V. Strauss, P.H. Seeberger, A. Savateev, and F.F. Loeffler, Laser-driven growth of structurally defined transition metal oxide nanocrystals on carbon nitride photoelectrodes in milliseconds. Nat. Commun. 12, 3224 (2021).
Article CAS PubMed PubMed Central Google Scholar
O. Gençyılmaz and T. Taşkopru, Effect of pH on the synthesis of CuO films by SILAR method. J. Alloys Compd. 695, 1205 (2017).
A.T. Carvalho, R.R. Lima, L.M. Silva, E. Fachini, and M.L.P. Silva, Nanostructured copper thin film used for catalysis. Sens. Actuators B Chem. 130, 141 (2008).
E.D. Jackson, J.M. Mosby, and A.L. Prieto, Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition. Electrochim. Acta 214, 253 (2016).
O.V. Diachenko, O.A. Dobrozhan, A.S. Opanasyuk, M.M. Ivashchenko, T.O. Protasova, D.I. Kurbatov, and A. Čerškus, The influence of optical and recombination losses on the efficiency of thin-film solar cells with a copper oxide absorber layer. Superlattices Microstruct. 122, 476 (2018).
R.L. Papurello, A.P. Cabello, M.A. Ulla, C.A. Neyertz, and J.M. Zamaro, Microreactor with copper oxide nanostructured films for catalytic gas phase oxidations. Surf. Coat. Technol. 328, 231 (2017).
C. Baratto, R. Kumar, G. Faglia, K. Vojisavljević, and B. Malič, p-Type copper aluminum oxide thin films for gas-sensing applications. Sens. Actuators B Chem. 209, 287 (2015).
D.M. Jundale, P.B. Joshi, S. Sen, and V.B. Patil, Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties. J. Mater. Sci. Mater. Electron. 23, 1492 (2012).
V. Saravanan, P. Shankar, G.K. Mani, and J.B.B. Rayappan, Growth and characterization of spray pyrolysis deposited copper oxide thin films: Influence of substrate and annealing temperatures. J. Anal. Appl. Pyrolysis 111, 272 (2015).
G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, and S.L. Suib, Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J. Phys. Chem. C 116, 468 (2012).
V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.K. Rhee, and J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films 520, 6608 (2012).
V. Ramya, K. Neyvasagam, R. Chandramohan, S. Valanarasu, and A.M.F. Benial, Studies on chemical bath deposited CuO thin films for solar cells application. J. Mater. Sci. Mater. Electron. 26, 8489 (2015).
M.R. Das and P. Mitra, Influence of nickel incorporation on structural, optical and electrical characteristics of SILAR synthesized CuO thin films. J. Solgel Sci. Technol. 87, 59 (2018).
M. Amanullah, Q.A. Javed, and S. Rizwan, Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG). Mater. Chem. Phys. 180, 128 (2016).
J. Zhang, K. Tse, M. Wong, Y. Zhang, and J. Zhu, A brief review of co-doping. Front. Phys. 11, 117405 (2016).
S. Zhang, The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits a review. J. Phys. Condens. Matter 14, 881 (2002).
A. Abdel-Galil, N.L. Moussa, and I.S. Yahia, Study on spray deposited Ni-doped CuO nanostructured thin films: microstructural and optical behavior. J. Mater. Sci. Mater. Electron. 33, 4984 (2022).
Z.N. Kayani, W. Chaudhry, R. Sagheer, S. Riaz, and S. Naseem, Effect of Ce doping on crystallite size, band gap, dielectric and antibacterial properties of photocatalyst copper oxide Nano-structured thin films. Mater. Sci. Eng. 283, 115799 (2022).
A.A. Menazea and A.M. Mostafa, Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J. Environ. Chem. Eng. 8, 104104 (2020).
Md.M.H. Babu, J. Podder, R.R. Tofa, and L. Ali, Effect of Co doping in tailoring the crystallite size, surface morphology and optical band gap of CuO thin films prepared via thermal spray pyrolysis. Surf. Interfaces 25, 101269 (2021).
R. Aydin and H. Cavusoglu, Influence of sodium dodecyl sulfate as a surfactant on the microstructural, morphological and optoelectronic characteristics of SILAR deposited CuO thin films. Mater. Res. Express 6, 086403 (2019).
K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, and T.L. Remadevi, Studies on gold doped lead sulphide thin films grown by Silar technique. AIP Conf. Proc. 1391, 749 (2011).
M. Anwar, Z.N. Kayani, and A. Hassan, An insight of physical and antibacterial properties of Au-doped ZnO dip coated thin films. Opt. Mater. 118, 111276 (2021).
L. Ouarez, A. Chelouche, T. Touam, R. Mahiou, D. Djouadi, and A. Potdevin, Au-doped ZnO sol-gel thin films: An experimental investigation on physical and photoluminescence properties. J. Lumin. 203, 222 (2018).
R. Daira, A. Kabir, B. Boudjema, and C. Sedrati, Structural and optical transmittance analysis of CuO thin films deposited by the spray pyrolysis method. Solid State Sci. 104, 106254 (2020).
R.K. Pandey, K. Ghosh, S. Mishra, J.P. Bange, P.K. Bajpai, and D.K. Gautam, Effect of film thickness on structural and optical properties of sol-gel spin coated aluminum doped zinc oxide (Al:ZnO) thin films. Mater. Res. Express. 5, 086408 (2018).
N. Gogurla, A.K. Sinha, S. Santra, S. Manna, and S.K. Ray, Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 4, 1 (2014).
H. Zhang, Y. Zhao, X. Geng, Y. Huang, Y. Li, H. Liu, Y. Liu, Y. Li, X. Wang, H. Tian, R. Liang, and T.L. Ren, Au nanoparticles-decorated surface Plasmon enhanced ZnO nanorods ultraviolet photodetector on flexible transparent mica substrate. IEEE J. Electron. Devices Soc. 7, 196 (2019).
A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish J. Phys. 44, 302 (2020).
M. Yilmaz, A. Kocyigit, B.B. Cirak, H. Kacus, U. Incekara, and S. Aydogan, The comparison of Co/hematoxylin/n-Si and Co/hematoxylin/p-Si devices as rectifier for a wide range temperature. Mater. Sci. Semicond. Process. 113, 105039 (2020).
D.E. Yıldız, H.H. Gullu, L. Toppare, and A. Cirpan, Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend. J. Mater. Sci. Mater. Electron. 31, 15233 (2020).
A. Kocyigit, M. Yılmaz, Ş Aydoğan, and Ü. İncekara, The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. J. Alloys Compd. 790, 388 (2019).
Comments (0)