Steensholt, G. On the effect of copper on cytochrome oxidase. Acta Physiol. Scand. 14, 335–339 (1947).
Article CAS PubMed Google Scholar
Xue, Q. et al. Copper metabolism in cell death and autophagy. Autophagy 19, 2175–21951 (2023).
Article CAS PubMed PubMed Central Google Scholar
Danks, D. M., Cartwright, E., Stevens, B. J. & Townley, R. R. Menkes’ kinky hair disease: further definition of the defect in copper transport. Science 179, 1140–1142 (1973).
Article ADS CAS PubMed Google Scholar
Cumings, J. N. The metabolism of copper and Wilson’s disease. Proc. Nutr. Soc. 21, 29–34 (1962).
Article CAS PubMed Google Scholar
Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).
Article CAS PubMed Google Scholar
Rose, F., Hodak, M. & Bernholc, J. Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci. Rep. 1, 11 (2011).
Article ADS PubMed PubMed Central Google Scholar
Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 14219–14224 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
Atari-Hajipirloo, S., Valizadeh, N., Khadem-Ansari, M. H., Rasmi, Y. & Kheradmand, F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int. J. Endocrinol. Metab. 14, e33273 (2016).
Article PubMed PubMed Central Google Scholar
Yang, H. et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 11, 1363–1371 (2019).
Article CAS PubMed Google Scholar
Leone, N., Courbon, D., Ducimetiere, P. & Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308–314 (2006).
Shanbhag, V. C. et al. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118893 (2021).
Article CAS PubMed Google Scholar
Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J. & Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA 110, 19507–19512 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Ge, E. J. et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22, 102–113 (2022).
Article CAS PubMed Google Scholar
Tang, D., Chen, X. & Kroemer, G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 32, 417–418 (2022).
Article PubMed PubMed Central Google Scholar
Guan, D., Zhao, L., Shi, X., Ma, X. & Chen, Z. Copper in cancer: from pathogenesis to therapy. Biomed. Pharmacother. 163, 114791 (2023).
Article CAS PubMed Google Scholar
Yamaguchi-Iwai, Y. et al. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272, 17711–17718 (1997).
Article CAS PubMed Google Scholar
Rees, E. M., Lee, J. & Thiele, D. J. Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J. Biol. Chem. 279, 54221–54229 (2004).
Article CAS PubMed Google Scholar
Arredondo, M., Muñoz, P., Mura, C. V. & Nùñez, M. T. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284, 1525–1530 (2003).
Lin, C., Zhang, Z., Wang, T., Chen, C. & James Kang, Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics 7, 1285–1289 (2015).
Article CAS PubMed Google Scholar
Qi, Y. et al. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci. Rep. 13, 17790 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Porcu, C. et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget 9, 9325–9343 (2018).
Article PubMed PubMed Central Google Scholar
Roberts, E. A. & Sarkar, B. Liver as a key organ in the supply, storage, and excretion of copper. Am. J. Clin. Nutr. 88, 851S–854S (2008).
Article CAS PubMed Google Scholar
Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).
Article CAS PubMed Google Scholar
Pan, Q. et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62, 4854–4859 (2002).
Chidambaram, M. V., Barnes, G. & Frieden, E. Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. J. Inorg. Biochem. 22, 231–240 (1984).
Article CAS PubMed Google Scholar
Zhang, B. et al. Cuproplasia characterization in colon cancer assists to predict prognosis and immunotherapeutic response. Front. Oncol. 13, 1061084 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ryan, A., Nevitt, S. J., Tuohy, O. & Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Database Syst. Rev. 2019, CD012267 (2019).
PubMed PubMed Central Google Scholar
Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (1999).
Wang, X. et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat. Commun. 12, 2259 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
Gomez, M. L., Shah, N., Kenny, T. C., Jenkins, E. C. Jr & Germain, D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 38, 5751–5765 (2019).
Article CAS PubMed PubMed Central Google Scholar
Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014).
Article CAS PubMed Google Scholar
Grasso, M. et al. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 297, 101314 (2021).
Article CAS PubMed PubMed Central Google Scholar
McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007).
Article CAS PubMed Google Scholar
Stiburek, L., Vesela, K., Hansikova, H., Hulkova, H. & Zeman, J. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell Physiol. 296, C1218–1226 (2009).
Article CAS PubMed Google Scholar
Aich, A. et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 7, e32572 (2018).
Article PubMed PubMed Central Google Scholar
Pacheu
Comments (0)