Targeting cuproplasia and cuproptosis in cancer

Steensholt, G. On the effect of copper on cytochrome oxidase. Acta Physiol. Scand. 14, 335–339 (1947).

Article  CAS  PubMed  Google Scholar 

Xue, Q. et al. Copper metabolism in cell death and autophagy. Autophagy 19, 2175–21951 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danks, D. M., Cartwright, E., Stevens, B. J. & Townley, R. R. Menkes’ kinky hair disease: further definition of the defect in copper transport. Science 179, 1140–1142 (1973).

Article  ADS  CAS  PubMed  Google Scholar 

Cumings, J. N. The metabolism of copper and Wilson’s disease. Proc. Nutr. Soc. 21, 29–34 (1962).

Article  CAS  PubMed  Google Scholar 

Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

Article  CAS  PubMed  Google Scholar 

Rose, F., Hodak, M. & Bernholc, J. Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci. Rep. 1, 11 (2011).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 14219–14224 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Atari-Hajipirloo, S., Valizadeh, N., Khadem-Ansari, M. H., Rasmi, Y. & Kheradmand, F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int. J. Endocrinol. Metab. 14, e33273 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Yang, H. et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 11, 1363–1371 (2019).

Article  CAS  PubMed  Google Scholar 

Leone, N., Courbon, D., Ducimetiere, P. & Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308–314 (2006).

Article  PubMed  Google Scholar 

Shanbhag, V. C. et al. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118893 (2021).

Article  CAS  PubMed  Google Scholar 

Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J. & Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA 110, 19507–19512 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ge, E. J. et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22, 102–113 (2022).

Article  CAS  PubMed  Google Scholar 

Tang, D., Chen, X. & Kroemer, G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 32, 417–418 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Guan, D., Zhao, L., Shi, X., Ma, X. & Chen, Z. Copper in cancer: from pathogenesis to therapy. Biomed. Pharmacother. 163, 114791 (2023).

Article  CAS  PubMed  Google Scholar 

Yamaguchi-Iwai, Y. et al. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272, 17711–17718 (1997).

Article  CAS  PubMed  Google Scholar 

Rees, E. M., Lee, J. & Thiele, D. J. Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J. Biol. Chem. 279, 54221–54229 (2004).

Article  CAS  PubMed  Google Scholar 

Arredondo, M., Muñoz, P., Mura, C. V. & Nùñez, M. T. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284, 1525–1530 (2003).

Article  Google Scholar 

Lin, C., Zhang, Z., Wang, T., Chen, C. & James Kang, Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics 7, 1285–1289 (2015).

Article  CAS  PubMed  Google Scholar 

Qi, Y. et al. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci. Rep. 13, 17790 (2023).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Porcu, C. et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget 9, 9325–9343 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Roberts, E. A. & Sarkar, B. Liver as a key organ in the supply, storage, and excretion of copper. Am. J. Clin. Nutr. 88, 851S–854S (2008).

Article  CAS  PubMed  Google Scholar 

Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).

Article  CAS  PubMed  Google Scholar 

Pan, Q. et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62, 4854–4859 (2002).

CAS  PubMed  Google Scholar 

Chidambaram, M. V., Barnes, G. & Frieden, E. Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. J. Inorg. Biochem. 22, 231–240 (1984).

Article  CAS  PubMed  Google Scholar 

Zhang, B. et al. Cuproplasia characterization in colon cancer assists to predict prognosis and immunotherapeutic response. Front. Oncol. 13, 1061084 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan, A., Nevitt, S. J., Tuohy, O. & Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Database Syst. Rev. 2019, CD012267 (2019).

PubMed  PubMed Central  Google Scholar 

Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (1999).

Article  ADS  Google Scholar 

Wang, X. et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat. Commun. 12, 2259 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gomez, M. L., Shah, N., Kenny, T. C., Jenkins, E. C. Jr & Germain, D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 38, 5751–5765 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014).

Article  CAS  PubMed  Google Scholar 

Grasso, M. et al. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 297, 101314 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007).

Article  CAS  PubMed  Google Scholar 

Stiburek, L., Vesela, K., Hansikova, H., Hulkova, H. & Zeman, J. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell Physiol. 296, C1218–1226 (2009).

Article  CAS  PubMed  Google Scholar 

Aich, A. et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 7, e32572 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pacheu

Comments (0)

No login
gif