Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet 396, 635–648 (2020).
Article CAS PubMed Google Scholar
Kang, Y. K. et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 234–247 (2022).
Article CAS PubMed Google Scholar
Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398, 27–40 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lordick, F. et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1005–1020 (2022).
Article CAS PubMed Google Scholar
Nagatsuma, A. K. et al. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 18, 227–238 (2015).
Article CAS PubMed Google Scholar
Nakamura, Y., Kawazoe, A., Lordick, F., Janjigian, Y. Y. & Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat. Rev. Clin. Oncol. 18, 473–487 (2021).
Shitara, K. et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942–948 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yeong, J. et al. Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric Cancer 25, 741–750 (2022).
Article CAS PubMed PubMed Central Google Scholar
Shitara, K. et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet 401, 1655–1668 (2023).
Article CAS PubMed Google Scholar
Shah, M. A. et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat. Med. 29, 2133–2141 (2023).
Article CAS PubMed PubMed Central Google Scholar
Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).
Article CAS PubMed PubMed Central Google Scholar
Janjigian, Y. Y. et al. A multi-cohort phase I/IIa clinical trial to evaluate the safety, tolerability, and pharmacokinetics of TST001 administered as a monotherapy, with nivolumab or standard of care in patients with locally advanced or metastatic solid tumors: TransStar101. J. Clin. Oncol. 41, (Suppl. 16), Abstr. TPS4176 (2023).
Xu, R.-H. et al. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 352 (2023).
Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).
Article CAS PubMed Google Scholar
Sahin, U. et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 14, 7624–7634 (2008).
Article CAS PubMed Google Scholar
Tsukita, S., Itoh, M., Nagafuchi, A., Yonemura, S. & Tsukita, S. Submembranous junctional plaque proteins include potential tumor suppressor molecules. J. Cell Biol. 123, 1049–1053 (1993).
Article CAS PubMed Google Scholar
Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).
Article CAS PubMed Google Scholar
Schneeberger, E. E. & Lynch, R. D. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262, L647–L661 (1992).
Gunzel, D. & Yu, A. S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525–569 (2013).
Article PubMed PubMed Central Google Scholar
Gumbiner, B. M. Breaking through the tight junction barrier. J. Cell Biol. 123, 1631–1633 (1993).
Article CAS PubMed Google Scholar
Anderson, J. M. & Van Itallie, C. M. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269, G467–G475 (1995).
Staehelin, L. A. Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. 13, 763–786 (1973).
Article CAS PubMed Google Scholar
Tsukita, S. & Furuse, M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149, 13–16 (2000).
Article CAS PubMed PubMed Central Google Scholar
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. & Tsukita, S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550 (1998).
Article CAS PubMed PubMed Central Google Scholar
Morin, P. J. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 65, 9603–9606 (2005).
Article CAS PubMed Google Scholar
Niimi, T. et al. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol. Cell Biol. 21, 7380–7390 (2001).
Article CAS PubMed PubMed Central Google Scholar
Türeci, O. et al. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene 481, 83–92 (2011).
Sahin, U. et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 32, 609–619 (2021).
Article CAS PubMed Google Scholar
Jovov, B. et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1106–G1113 (2007).
Article CAS PubMed Google Scholar
Hayashi, D. et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology 142, 292–304 (2012).
Article CAS PubMed Google Scholar
Hewitt, K. J., Agarwal, R. & Morin, P. J. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6, 186 (2006).
Article PubMed PubMed Central Google Scholar
Jun, K. H., Kim, J. H., Jung, J. H., Choi, H. J. & Chin, H. M. Expression of claudin-7 and loss of claudin-18 correlate with poor prognosis in gastric cancer. Int. J. Surg. 12, 156–162 (2014).
Chen, X. et al. Clinicopathological significance of claudin 4 expression in gastric carcinoma: a systematic review and meta-analysis. Oncol. Targets Ther. 27, 3205–3212 (2016).
Park, J. Y. et al. Up-regulated claudin 7 expression in intestinal-type gastric carcinoma. Oncol. Rep. 18, 377–382 (2007).
Kohmoto, T. et al. Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer 23, 403–417 (2020).
Article CAS PubMed Google Scholar
Hedrick, L., Cho, K. R. & Vogelstein, B. Cell adhesion molecules as tumour suppressors. Trends Cell Biol. 3, 36–39 (1993).
Article CAS PubMed Google Scholar
Resnick, M. B., Konkin, T., Routhier, J., Sabo, E. & Pricolo, V. E. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod. Pathol. 18, 511–518 (2005).
Article CAS PubMed Google Scholar
Al Moustafa, A. E. et al. Identif
Comments (0)