Ying, H. et al. A multicenter clinical AI system study for detection and diagnosis of focal liver lesions. Nat. Commun. 15, 1131 (2024).
Article CAS PubMed PubMed Central Google Scholar
Mun, S. K., Wong, K. H., Lo, S. B., Li, Y. & Bayarsaikhan, S. Artificial Intelligence for the future radiology diagnostic service. Front. Mol. Biosci. 7, 614258 (2021).
Article PubMed PubMed Central Google Scholar
Zhou, S. K. et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109, 820–838 (2021).
Cheng, P. M. et al. Deep learning: an update for radiologists. Radiographics 41, 1427–1445 (2021).
Saba, L. et al. The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019).
Aggarwal, R. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit. Med. 4, 65 (2021).
Article PubMed PubMed Central Google Scholar
Yasaka, K., Akai, H., Abe, O. & Kiryu, S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286, 887–896 (2018).
Hong, G. S. et al. Overcoming the challenges in the development and implementation of artificial intelligence in radiology: a comprehensive review of solutions beyond supervised learning. Korean J. Radiol. 24, 1061–1080 (2023).
Article PubMed PubMed Central Google Scholar
Yasaka, K. & Abe, O. Deep learning and artificial intelligence in radiology: current applications and future directions. PLoS Med. 15, e1002707 (2018).
Article PubMed PubMed Central Google Scholar
Groen, A. M., Kraan, R., Amirkhan, S. F., Daams, J. G. & Maas, M. A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: limited use of explainable AI? Eur. J. Radiol. 157, 110592 (2022).
Comments (0)