Photoautotrophic potential and photosynthetic competence in Ananas comosus [L]. Merr. cultivar Turiaçu in in vitro culture systems

Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tiss Org Cult 117:65–76. https://doi.org/10.1007/s11240-013-0421-0

Article  CAS  Google Scholar 

Aliniaeifard S, Asayesh ZM, Driver J, Vahdati K (2020) Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees 34:1219–1232. https://doi.org/10.1007/s00468-020-01992-x

Article  CAS  Google Scholar 

Alves JP, Pinheiro MVM, Corrêa TR, Alves GL, Marinho TRS, Batista DS, Figueiredo FAMMA, Reis FO, Ferraz TM, Campostrini E (2023) Morphophysiology of Ananas comosus during in vitro photomixotrophic growth and ex vitro acclimatization. In Vitro Cell Dev Biol - Plant 59:106–120. https://doi.org/10.1007/s11627-022-10321-5

Article  CAS  Google Scholar 

Aragón CE, Sánchez C, Gonzalez-Olmedo J, Escalona M, Carvalho L, Amâncio S (2014) Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol Plant 58:29–38. https://doi.org/10.1007/s10535-013-0381-6

Article  CAS  Google Scholar 

Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S (2013) High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ 36:382–392. https://doi.org/10.1111/j.1365-3040.2012.02580.x

Article  CAS  PubMed  Google Scholar 

Ayub RA, Santos JN, Zanlorensi Junior LA, Silva DMd, Carvalho TC, Grimaldi F (2019) Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Cienc Agrotec 43:e007219. https://doi.org/10.1590/1413-7054201943007219

Article  CAS  Google Scholar 

Batista DS, Dias LLC, Rêgo MM, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:e20150245. https://doi.org/10.1590/0103-8478cr20150245

Article  CAS  Google Scholar 

Bello-Bello JJ, Cruz-Cruz CA, Pérez-Guerra JC (2019) A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell Dev Biol - Plant 55:313–320. https://doi.org/10.1007/s11627-019-09973-7

Article  Google Scholar 

Cavallaro V, Avola G, Fascella G, Pellegrino A, Ierna A (2023) Effects of Spectral Quality and Light Quantity of LEDs on In Vitro Shoot Development and Proliferation of Ananas comosus L. Merr Agron 13:1072. https://doi.org/10.3390/agronomy13041072

Article  Google Scholar 

Chaari-Rkhis A, Maalej M, Drira N, Standardi A (2011) Micropropagation of olive tree Olea europaea L. ‘Oueslati.’ Turk J Agric for 35:403–412. https://doi.org/10.3906/tar-1002-741

Article  CAS  Google Scholar 

Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Azevedo JFL, Saldanha CW, da Cruz ACF, DaMatta FM, Otoni WC (2015) In vitro photoautotrophic potential and ex vitro photosynthetic competence of Pfaffia glomerata (Spreng.) Pedersen accessions. Plant Cell Tiss Org Cult 121:289–300. https://doi.org/10.1007/s11240-014-0700-4

Article  CAS  Google Scholar 

Couto TR, Silva JR, Torres Netto A, Carvalho VS, Campostrini E (2014) Eficiência fotossintética e crescimento de genótipos de abacaxizeiro cultivados in vitro em diferentes qualidades de luz, tipos de frasco de cultivo e concentrações de sacarose. Rev Bras Frutic 36:459–466. https://doi.org/10.1590/0100-2945-167/13

Article  Google Scholar 

Cutter EG (1986) Anatomia vegetal. Parte I - Células e tecidos, 2nd edn. Roca, São Paulo, pp 304

Damiani CR, Schuch MW (2008) Multiplicação fotoautotrófica de mirtilo através do uso de luz natural. Rev Bras Frutic 30:482–487. https://doi.org/10.1590/S0100-29452008000200037

Article  Google Scholar 

Dias DP, Marenco RA (2007) Fotossíntese e fotoinibição em mogno e acariquara in função da luminosidade e temperatura foliar. Pesq Agropec Bras 42:305–311. https://doi.org/10.1590/S0100-204X2007000300002

Article  Google Scholar 

Erol MH, Dönmez D, Biçen B, Şimşek Ö, Kaçar YA (2023) Modern approaches to in vitro clonal banana production: Next-generation tissue culture systems. Horticulturae 9:1154. https://doi.org/10.3390/horticulturae9101154

Article  Google Scholar 

Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748. https://doi.org/10.1007/s002990050653

Article  CAS  Google Scholar 

Fanourakis D, Carvalho SM, Almeida DP, Heuvelink EJPP (2011) Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiol Plant 142:274–286. https://doi.org/10.1111/j.1399-3054.2011.01475.x

Article  CAS  PubMed  Google Scholar 

Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. https://doi.org/10.1007/BF00386231

Article  CAS  PubMed  Google Scholar 

Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001

Article  Google Scholar 

Ferreira PRB, da Cruz ACF, Batista DS, Nery LA, Andrade IG, Rocha DI, Felipe SHS, Koehler AD, Nunes-Nesi A, Otoni WC (2019) CO2 enrichment and supporting material impact the primary metabolism and 20-hydroxyecdysone levels in Brazilian ginseng grown under photoautotrophy. Plant Cell Tiss Org Cult 139:77–89. https://doi.org/10.1007/s11240-019-01664-w

Article  CAS  Google Scholar 

Fuentes G, Talavera C, Desjardins Y, Santamaía JM (2007) Low exogenous sucrose improves ex vitro growth and photosynthesis in coconut in vitro plantlets if grown in vitro under high light. Acta Hortic 748:151–155. https://doi.org/10.17660/ActaHortic.2007.748.18

Article  CAS  Google Scholar 

Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1002/elsc.201300166

Article  CAS  Google Scholar 

Gonçalves JFC, Silva CE, Guimarães DG, Bernardes RS (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Amaz 40:89–98. https://doi.org/10.1590/S0044-59672010000100012

Article  Google Scholar 

Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Horticult 108:105–120. https://doi.org/10.1016/j.scienta.2006.01.038

Article  CAS  Google Scholar 

Iarema L, da Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, de Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:227–238. https://doi.org/10.1007/s11240-012-0145-6

Article  Google Scholar 

Kessel-Domini A, Pérez-Brito D, Guzmán-Antonio A, Barredo-Pool FA, Mijangos-Cortés JO, Iglesias-Andreu LG, Cortés-Velázquez A, Canto-Flick A, Avilés-Viñas SA, Rodríguez-Llanes Y, Santana-Buzzy N (2022) Indirect somatic embryogenesis: an efficient and genetically reliable clonal propagation system for Ananas comosus L. Merr. hybrid “MD2”. Agriculture 12:713. https://doi.org/10.3390/agriculture12050713

Kozai T (1991) Micropropagation under photoautotrophic conditions. In: Debergh PC, Zimmerman RH (eds) Micropropagation: Technology and Application. Springer, Netherlands, Dordrecht, pp 447–469. https://doi.org/10.1007/978-94-009-2075-0_26

Chapter  Google Scholar 

Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propag Ornam Plants 10:188–204

Google Scholar 

Kozai T, Kubota C (2001) Development a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537. https://doi.org/10.1007/PL00014020

Article  Google Scholar 

Kozai T, Kubota C, RyoungJeong B (1997) Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss Org Cult 51:49–56. https://doi.org/10.1023/A:1005809518371

Article  Google Scholar 

Le KC, Dedicova B, Johansson S, Lelu-Walter MA, Egertsdotter U (2021) Temporary immersion bioreactor system for propagation by somatic embryogenesis of hybrid larch (Larix × eurolepis Henry). Biotechnol Rep 32:e00684. https://doi.org/10.1016/j.btre.2021.e00684

Article  CAS  Google Scholar 

Lima GPP, Campos RAS, Willadino GL, Câmara TJR, Vianello F (2012) Polyamines, gelling agents in tissue culture, micropropagation of medicinal plants and bioreactors. In: Annarita L, Laura MRR (eds) Recent advances in plant in vitro culture. Rijeka, pp 165–182. https://doi.org/10.5772/51028

Majada JP, Fal MA, Sánchez-Tamés R (1997) The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. In Vitro Cell Dev Biol - Plant 33:62–69. https://doi.org/10.1007/s11627-997-0042-6

Article  Google Scholar 

Martins JPR, de Almeida Rodrigues LC, Santos ER, Gontijo ABPL, Falqueto AR (2020) Impacts of photoautotrophic, photomixotrophic, and heterotrophic conditions on the anatomy and photosystem II of in vitro-propagated Aechmea blanchetiana (Baker) L.B. Sm. (Bromeliaceae). In Vitro Cell Dev Biol - Plant 56:350–361. https://doi.org/10.1007/s11627-019-10034-2

Article  CAS  Google Scholar 

McCarthy A, Chung M, Ivanov AG, Krol M, Inman M, Maxwell DP, Hüner NPA (2016) An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. J Plant Physiol 199:40–51. https://doi.org/10.1016/j.jplph.2016.05.008

Article  CAS  PubMed  Google Scholar 

Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Horticult 123:295–300. https://doi.org/10.1016/j.scienta.2009.09.014

Article  CAS  Google Scholar 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Article  CAS  Google Scholar 

Nasri A, Baklouti E, Ben Romdhane A, Maalej M, Schumacher HM, Drira N, Fki L (2019) Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci Horticult 245:144–153. https://doi.org/10.1016/j.scienta.2018.10.016

Article  CAS  Google Scholar 

Oliveira-Cauduro Yd, Lopes VR, Bona CMD, Alcantara GBd, Biasi LA (2016) Micropropagação de abacaxizeiro com enraizamento in vitro e ex vitro. Plant Cell Cult Micropropag 12:53–60

Google Scholar 

Pinheiro MVM, Ríos-Ríos AM, da Cruz ACF, Rocha DI, Orbes MY, Saldanha CW, Batista DS, de Carvalho ACPP, Otoni WC (2021) CO2 enrichment alters morphophysiology and improves growth and acclimatization in Etlingera Elatior (Jack) R.M. Smith Micropropagated Plants Braz J Bot 44:799–809. https://doi.org/10.1007/s40415-021-00741-9

Comments (0)

No login
gif