Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tiss Org Cult 117:65–76. https://doi.org/10.1007/s11240-013-0421-0
Aliniaeifard S, Asayesh ZM, Driver J, Vahdati K (2020) Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees 34:1219–1232. https://doi.org/10.1007/s00468-020-01992-x
Alves JP, Pinheiro MVM, Corrêa TR, Alves GL, Marinho TRS, Batista DS, Figueiredo FAMMA, Reis FO, Ferraz TM, Campostrini E (2023) Morphophysiology of Ananas comosus during in vitro photomixotrophic growth and ex vitro acclimatization. In Vitro Cell Dev Biol - Plant 59:106–120. https://doi.org/10.1007/s11627-022-10321-5
Aragón CE, Sánchez C, Gonzalez-Olmedo J, Escalona M, Carvalho L, Amâncio S (2014) Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol Plant 58:29–38. https://doi.org/10.1007/s10535-013-0381-6
Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S (2013) High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ 36:382–392. https://doi.org/10.1111/j.1365-3040.2012.02580.x
Article CAS PubMed Google Scholar
Ayub RA, Santos JN, Zanlorensi Junior LA, Silva DMd, Carvalho TC, Grimaldi F (2019) Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Cienc Agrotec 43:e007219. https://doi.org/10.1590/1413-7054201943007219
Batista DS, Dias LLC, Rêgo MM, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:e20150245. https://doi.org/10.1590/0103-8478cr20150245
Bello-Bello JJ, Cruz-Cruz CA, Pérez-Guerra JC (2019) A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell Dev Biol - Plant 55:313–320. https://doi.org/10.1007/s11627-019-09973-7
Cavallaro V, Avola G, Fascella G, Pellegrino A, Ierna A (2023) Effects of Spectral Quality and Light Quantity of LEDs on In Vitro Shoot Development and Proliferation of Ananas comosus L. Merr Agron 13:1072. https://doi.org/10.3390/agronomy13041072
Chaari-Rkhis A, Maalej M, Drira N, Standardi A (2011) Micropropagation of olive tree Olea europaea L. ‘Oueslati.’ Turk J Agric for 35:403–412. https://doi.org/10.3906/tar-1002-741
Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Azevedo JFL, Saldanha CW, da Cruz ACF, DaMatta FM, Otoni WC (2015) In vitro photoautotrophic potential and ex vitro photosynthetic competence of Pfaffia glomerata (Spreng.) Pedersen accessions. Plant Cell Tiss Org Cult 121:289–300. https://doi.org/10.1007/s11240-014-0700-4
Couto TR, Silva JR, Torres Netto A, Carvalho VS, Campostrini E (2014) Eficiência fotossintética e crescimento de genótipos de abacaxizeiro cultivados in vitro em diferentes qualidades de luz, tipos de frasco de cultivo e concentrações de sacarose. Rev Bras Frutic 36:459–466. https://doi.org/10.1590/0100-2945-167/13
Cutter EG (1986) Anatomia vegetal. Parte I - Células e tecidos, 2nd edn. Roca, São Paulo, pp 304
Damiani CR, Schuch MW (2008) Multiplicação fotoautotrófica de mirtilo através do uso de luz natural. Rev Bras Frutic 30:482–487. https://doi.org/10.1590/S0100-29452008000200037
Dias DP, Marenco RA (2007) Fotossíntese e fotoinibição em mogno e acariquara in função da luminosidade e temperatura foliar. Pesq Agropec Bras 42:305–311. https://doi.org/10.1590/S0100-204X2007000300002
Erol MH, Dönmez D, Biçen B, Şimşek Ö, Kaçar YA (2023) Modern approaches to in vitro clonal banana production: Next-generation tissue culture systems. Horticulturae 9:1154. https://doi.org/10.3390/horticulturae9101154
Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748. https://doi.org/10.1007/s002990050653
Fanourakis D, Carvalho SM, Almeida DP, Heuvelink EJPP (2011) Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiol Plant 142:274–286. https://doi.org/10.1111/j.1399-3054.2011.01475.x
Article CAS PubMed Google Scholar
Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. https://doi.org/10.1007/BF00386231
Article CAS PubMed Google Scholar
Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001
Ferreira PRB, da Cruz ACF, Batista DS, Nery LA, Andrade IG, Rocha DI, Felipe SHS, Koehler AD, Nunes-Nesi A, Otoni WC (2019) CO2 enrichment and supporting material impact the primary metabolism and 20-hydroxyecdysone levels in Brazilian ginseng grown under photoautotrophy. Plant Cell Tiss Org Cult 139:77–89. https://doi.org/10.1007/s11240-019-01664-w
Fuentes G, Talavera C, Desjardins Y, Santamaía JM (2007) Low exogenous sucrose improves ex vitro growth and photosynthesis in coconut in vitro plantlets if grown in vitro under high light. Acta Hortic 748:151–155. https://doi.org/10.17660/ActaHortic.2007.748.18
Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1002/elsc.201300166
Gonçalves JFC, Silva CE, Guimarães DG, Bernardes RS (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Amaz 40:89–98. https://doi.org/10.1590/S0044-59672010000100012
Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Horticult 108:105–120. https://doi.org/10.1016/j.scienta.2006.01.038
Iarema L, da Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, de Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:227–238. https://doi.org/10.1007/s11240-012-0145-6
Kessel-Domini A, Pérez-Brito D, Guzmán-Antonio A, Barredo-Pool FA, Mijangos-Cortés JO, Iglesias-Andreu LG, Cortés-Velázquez A, Canto-Flick A, Avilés-Viñas SA, Rodríguez-Llanes Y, Santana-Buzzy N (2022) Indirect somatic embryogenesis: an efficient and genetically reliable clonal propagation system for Ananas comosus L. Merr. hybrid “MD2”. Agriculture 12:713. https://doi.org/10.3390/agriculture12050713
Kozai T (1991) Micropropagation under photoautotrophic conditions. In: Debergh PC, Zimmerman RH (eds) Micropropagation: Technology and Application. Springer, Netherlands, Dordrecht, pp 447–469. https://doi.org/10.1007/978-94-009-2075-0_26
Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propag Ornam Plants 10:188–204
Kozai T, Kubota C (2001) Development a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537. https://doi.org/10.1007/PL00014020
Kozai T, Kubota C, RyoungJeong B (1997) Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss Org Cult 51:49–56. https://doi.org/10.1023/A:1005809518371
Le KC, Dedicova B, Johansson S, Lelu-Walter MA, Egertsdotter U (2021) Temporary immersion bioreactor system for propagation by somatic embryogenesis of hybrid larch (Larix × eurolepis Henry). Biotechnol Rep 32:e00684. https://doi.org/10.1016/j.btre.2021.e00684
Lima GPP, Campos RAS, Willadino GL, Câmara TJR, Vianello F (2012) Polyamines, gelling agents in tissue culture, micropropagation of medicinal plants and bioreactors. In: Annarita L, Laura MRR (eds) Recent advances in plant in vitro culture. Rijeka, pp 165–182. https://doi.org/10.5772/51028
Majada JP, Fal MA, Sánchez-Tamés R (1997) The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. In Vitro Cell Dev Biol - Plant 33:62–69. https://doi.org/10.1007/s11627-997-0042-6
Martins JPR, de Almeida Rodrigues LC, Santos ER, Gontijo ABPL, Falqueto AR (2020) Impacts of photoautotrophic, photomixotrophic, and heterotrophic conditions on the anatomy and photosystem II of in vitro-propagated Aechmea blanchetiana (Baker) L.B. Sm. (Bromeliaceae). In Vitro Cell Dev Biol - Plant 56:350–361. https://doi.org/10.1007/s11627-019-10034-2
McCarthy A, Chung M, Ivanov AG, Krol M, Inman M, Maxwell DP, Hüner NPA (2016) An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. J Plant Physiol 199:40–51. https://doi.org/10.1016/j.jplph.2016.05.008
Article CAS PubMed Google Scholar
Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Horticult 123:295–300. https://doi.org/10.1016/j.scienta.2009.09.014
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nasri A, Baklouti E, Ben Romdhane A, Maalej M, Schumacher HM, Drira N, Fki L (2019) Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci Horticult 245:144–153. https://doi.org/10.1016/j.scienta.2018.10.016
Oliveira-Cauduro Yd, Lopes VR, Bona CMD, Alcantara GBd, Biasi LA (2016) Micropropagação de abacaxizeiro com enraizamento in vitro e ex vitro. Plant Cell Cult Micropropag 12:53–60
Pinheiro MVM, Ríos-Ríos AM, da Cruz ACF, Rocha DI, Orbes MY, Saldanha CW, Batista DS, de Carvalho ACPP, Otoni WC (2021) CO2 enrichment alters morphophysiology and improves growth and acclimatization in Etlingera Elatior (Jack) R.M. Smith Micropropagated Plants Braz J Bot 44:799–809. https://doi.org/10.1007/s40415-021-00741-9
Comments (0)