Ganly I, Patel S, Shah J. Early stage squamous cell cancer of the oral tongue-clinicopathologic features affecting outcome. Cancer. 2012;118(1):101–11.
Campbell BR, Netterville JL, Sinard RJ, Mannion K, Rohde SL, Langerman A, et al. Early onset oral tongue cancer in the United States: a literature review. Oral Oncol [Internet]. 2018 Dec 1 [cited 2023 Oct 30]; 87:1. Available from: /pmc/articles/PMC7039330/
Zushi Y, Noguchi K, Urade M. An in vitro multistep carcinogenesis model for both HPV-positive and -negative human oral squamous cell carcinomas. Japanese J Oral Maxillofac Surg. 2013;59(3):159–71.
Mithani SK, Mydlarz WK, Grumbine FL, Smith IM, Califano JA. Molecular genetics of premalignant oral lesions. Oral Dis. 2007;13(2):126–33.
Article CAS PubMed Google Scholar
Tota JE, Anderson WF, Coffey C, Califano J, Cozen W, Ferris RL, et al. Rising incidence of oral tongue cancer among white men and women in the United States, 1973–2012. Oral Oncol. 2017;67:146–52. https://doi.org/10.1016/j.oraloncology.2017.02.019.
Mohamed KM, Le A, Duong H, Wu Y, Zhang Q, Messadi DV. Correlation between VEGF and HIF-1α expression in human oral squamous cell carcinoma. Exp Mol Pathol. 2004;76(2):143–52.
Article CAS PubMed Google Scholar
Hoff CM, Grau C, Overgaard J. Effect of smoking on oxygen delivery and outcome in patients treated with radiotherapy for head and neck squamous cell carcinoma - a prospective study. Radiother Oncol. 2012;103(1):38–44. https://doi.org/10.1016/j.radonc.2012.01.011.
Rouger-Gaudichon J, Cousin E, Jakobczyk H, Debaize L, Rio AG, Forestier A, et al. Hypoxia regulates CD9 expression and dissemination of B lymphoblasts. Leuk Res [Internet]. 2022 Dec 1 [cited 2023 Oct 30] 123. Available from: https://pubmed.ncbi.nlm.nih.gov/36335655/
Wright MD, Moseley GW, van Spriel AB. Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens. 2004;64:533–42.
Article CAS PubMed Google Scholar
Hemler ME. Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov. 2008;7:747–58.
Article CAS PubMed PubMed Central Google Scholar
H T Maecker1, S C Todd SL. The tetraspanin superfamily: molecular facilitators - PubMed. [cited 2023 Oct 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/9194523/
Wang JC, Bégin LR, Bérubé NG, Chevalier S, Aprikian AG, Gourdeau H, et al. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res. 2007;13(8):2354–61.
Article CAS PubMed Google Scholar
Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, et al. Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep. 2015;34(1):350–8.
Article CAS PubMed Google Scholar
Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res. 2004;10(12):4029–37.
Article CAS PubMed Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8.
Article CAS PubMed Google Scholar
Herr MJ, Mabry SE, Jennings LK. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells. PLoS ONE. 2014;9(9):e10699.
Nagaoka T, Kitaura K, Miyata Y, Kumagai K, Kaneda G, Kanazawa H, et al. Downregulation of epidermal growth factor receptor family receptors and ligands in a mutant K-ras group of patients with colorectal cancer. Mol Med Rep. 2016;13(4):3514–20.
Article CAS PubMed Google Scholar
Zhang J, Zhang LL, Shen L, Xu XM, Yu HG. Regulation of AKT gene expression by cisplatin. Oncol Lett. 2013;5(3):756–60.
Article CAS PubMed PubMed Central Google Scholar
Manjappa AB, Rao S, Shetty S, Shetty V, Asode AS, Molahalli SS, et al. Characterization of human articular cartilage derived mesenchymal progenitor cells from osteoarthritis patients. J Adv Biotechnol Exp Ther. 2021;4(2):200–9.
Lin Li, Shao-Hua Chen, Yu Zhang, Chao-Hui Yu, Shu-Dan Li YML. Is the hypoxia-inducible factor-1 alpha mRNA expression activated by ethanol-induced injury, the mechanism underlying alcoholic liver disease? - PubMed [Internet]. [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/17085342/
Michaud SE, Ménard C, Guy LG, Gennaro G, Rivard A. Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. FASEB J. 2003;17(9):1150–2.
Article CAS PubMed Google Scholar
Lin PY, Yu CH, Wang JT, Chen HH, Cheng SJ, Kuo MYP, et al. Expression of hypoxia-inducible factor-1α is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med. 2008;37(1):18–25.
Jiang L, Hochwald S, Deng S, Zhu Y, Tan C, Zhong Q, et al. Evaluation of EGF, EGFR, and E-cadherin as potential biomarkers for gastrointestinal cancers. Front Lab Med. 2017;1(3):135–40. https://doi.org/10.1016/j.flm.2017.08.001.
Tsalikidis C, Papachristou F, Pitiakoudis M, Asimakopoulos B, Trypsianis G, Bolanaki E, et al. Soluble E-cadherin as a diagnostic and prognostic marker in gastric carcinoma. Folia Med (Plovdiv). 2013;55(3–4):26–32.
Article CAS PubMed Google Scholar
Shernan GH, Michael RV, Kirk RS, Laura FN, Gabrielle M, Fiona H, Todd ED, Gregory MV, Arne S, Margaret LM, Sarah AC, Bruce RB, Angela P-M, and,. Circulating angiogenic factors associated with response and survival in patients with acute graft-versus-host disease. Biol Blood Marrow Transplant. 2016;176(1):139–48.
Maramotti S, Paci M, Manzotti G, Rapicetta C, Gugnoni M, Galeone C, et al. Soluble epidermal growth factor receptors (sEGFRs) in cancer: Biological aspects and clinical relevance. Int J Mol Sci. 2016;17(4):593.
Article PubMed PubMed Central Google Scholar
Heng H, Lingling G, Cun W, Yan L, Huiying M, Long C, Jie Q, Binbin L, Yinkun LCL. Lower serum soluble-EGFR is a potential biomarker for metastasis of HCC demonstrated by N-glycoproteomic analysis - PubMed [Internet]. [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/26105696/
Adamczyk KA, Klein-Scory S, Tehrani MM, Warnken U, Schmiegel W, Schnölzer M, et al. Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci. 2011;89(9–10):304–12. https://doi.org/10.1016/j.lfs.2011.06.020.
Article CAS PubMed Google Scholar
Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: recent advances. Research. 2016;5:2270.
Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev. 1990;11:418–42.
Article CAS PubMed Google Scholar
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52. https://doi.org/10.3390/cancers9050052.PMID:28513565;PMCID:PMC5447962.
Sato K-I. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci. 2013;14:10761–90.
Article PubMed PubMed Central Google Scholar
Morrison DK. MAP kinase pathways. Perspect Biol. 2012;4:a011254.
Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139.
Article CAS PubMed Google Scholar
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015;25:545–55.
Article CAS PubMed PubMed Central Google Scholar
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35.
Article CAS PubMed PubMed Central Google Scholar
Qi JC, Wang J, Mandadi S, Tanaka K, Roufogalis BD, Madigan MC, et al. Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood. 2006;107(1):135–42.
Article CAS PubMed PubMed Central Google Scholar
Kotha J, Longhurst C, Appling W, Jennings LK. Tetraspanin CD9 regulates β1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway. Exp Cell Res. 2008;314(8):1811–22.
Article CAS PubMed Google Scholar
Rappa G, Green TM, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6(10):7970–91.
Article PubMed PubMed Central Google Scholar
Yáñez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA, et al. Regulation of endothelial cell motility by complexes of retraspan molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141(3):791–804.
Article PubMed PubMed Central Google Scholar
Okochi H, Kato M, Nashiro K, Yoshie O, Miyazono K, Furue M. Expression of tetra-spans transmembrane family (CD9, CD37, CD53, CD63, CD81 and CD82) in normal and neoplastic human keratinocytes: an association of CD9 with α3β1 integrin. Br J Dermatol. 1997;137(6):856–63.
Comments (0)