The overlooked bacterial pandemic

O’neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. Wellcome Trust and HM Government

Dubourg G, Lagier JC, Robert C et al (2014) Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. Int J Antimicrob Agents 44:117–124

Article  PubMed  CAS  Google Scholar 

Blaser M (2011) Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476:393–394

Article  PubMed  CAS  Google Scholar 

Mackenzie JS, Jeggo M (2019) The one health approach-why is it so important? Trop Med Infect Dis 4:88

Article  PubMed  PubMed Central  Google Scholar 

Antimicrobial Resistance C (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655

Article  Google Scholar 

https://www.who.int/health-topics/plague#tab=tab_1

Piret J, Boivin G (2020) Pandemics throughout history. Front Microbiol 11:631736

Article  PubMed  Google Scholar 

Zietz BP, Dunkelberg H (2004) The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health 207:165–178

Article  PubMed  PubMed Central  Google Scholar 

https://www.who.int/news-room/fact-sheets/detail/cholera

Mutreja A, Kim DW, Thomson NR et al (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477:462–465

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kockerling E, Karrasch L, Schweitzer A et al (2017) Public health research resulting from one of the world’s largest outbreaks caused by entero-hemorrhagic Escherichia coli in Germany 2011: a review. Front Public Health 5:332

Article  PubMed  PubMed Central  Google Scholar 

Denamur E (2011) The 2011 Shiga toxin-producing Escherichia coli O104:H4 German outbreak: a lesson in genomic plasticity. Clin Microbiol Infect 17:1124–1125

Article  PubMed  CAS  Google Scholar 

STEC Workshop Reporting Group (2012) Experiences from the Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany and research needs in the field, Berlin, 28–29 November 2011. Euro Surveill 17(7):20091

Article  Google Scholar 

Horn DL, Zabriskie JB, Austrian R et al (1998) Why have group A streptococci remained susceptible to penicillin? Report on a symposium. Clin Infect Dis 26:1341–1345

Article  PubMed  CAS  Google Scholar 

Gutmann L, Tomasz A (1982) Penicillin-resistant and penicillin-tolerant mutants of group A Streptococci. Antimicrob Agents Chemother 22:128–136

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kimura K, Suzuki S, Wachino J et al (2008) First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 52:2890–2897

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nagano N, Nagano Y, Kimura K et al (2008) Genetic heterogeneity in pbp genes among clinically isolated group B Streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 52:4258–4267

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dahesh S, Hensler ME, Van Sorge NM et al (2008) Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother 52:2915–2918

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gaudreau C, Lecours R, Ismail J et al (2010) Prosthetic hip joint infection with a Streptococcus agalactiae isolate not susceptible to penicillin G and ceftriaxone. J Antimicrob Chemother 65:594–595

Article  PubMed  CAS  Google Scholar 

Kimura K, Wachino J, Kurokawa H et al (2009) Practical disk diffusion test for detecting group B streptococcus with reduced penicillin susceptibility. J Clin Microbiol 47:4154–4157

Article  PubMed  PubMed Central  CAS  Google Scholar 

Longtin J, Vermeiren C, Shahinas D et al (2011) Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. Antimicrob Agents Chemother 55:2983–2985

Article  PubMed  PubMed Central  CAS  Google Scholar 

Capoor MR, Nair D, Deb M et al (2006) Resistance to erythromycin and rising penicillin MIC in Streptococcus pyogenes in India. Jpn J Infect Dis 59:334–336

PubMed  CAS  Google Scholar 

Ogawa T, Terao Y, Sakata H et al (2011) Epidemiological characterization of Streptococcus pyogenes isolated from patients with multiple onsets of pharyngitis. FEMS Microbiol Lett 318:143–151

Article  PubMed  CAS  Google Scholar 

Yu D, Zheng Y, Yang Y (2020) Is there emergence of beta-lactam antibiotic-resistant Streptococcus pyogenes in China? Infect Drug Resist 13:2323–2327

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berwal A, Chawla K, Shetty S et al (2019) Trend of antibiotic susceptibility of Streptococcus pyogenes isolated from respiratory tract infections in tertiary care hospital in south Karnataka. Iran J Microbiol 11:13–18

PubMed  PubMed Central  Google Scholar 

Vannice KS, Ricaldi J, Nanduri S et al (2020) Streptococcus pyogenes pbp2x mutation confers reduced susceptibility to beta-lactam antibiotics. Clin Infect Dis 71:201–204

Article  PubMed  CAS  Google Scholar 

Hayes A, Lacey JA, Morris JM et al (2020) Restricted sequence variation in streptococcus pyogenes penicillin binding proteins. mSphere 5(2):e00090-20

Musser JM, Beres SB, Zhu L et al (2020) Reduced in vitro susceptibility of streptococcus pyogenes to beta-Lactam antibiotics associated with mutations in the pbp2x gene is geographically widespread. J Clin Microbiol 58(4):e01993-19

Article  PubMed  PubMed Central  Google Scholar 

Carapetis JR, Steer AC, Mulholland EK et al (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5:685–694

Article  PubMed  Google Scholar 

Abraham T, Sistla S (2018) Trends in antimicrobial resistance patterns of Group A streptococci, molecular basis and implications. Indian J Med Microbiol 36:186–191

Article  PubMed  Google Scholar 

Shen Y, Cai J, Davies MR et al (2018) Identification and characterization of fluoroquinolone non-susceptible Streptococcus pyogenes clones harboring tetracycline and macrolide resistance in Shanghai, China. Front Microbiol 9:542

Article  PubMed  PubMed Central  Google Scholar 

Samir A, Abdel-Moein KA, Zaher HM (2020) Emergence of penicillin-macrolide-resistant Streptococcus pyogenes among pet animals: an ongoing public health threat. Comp Immunol Microbiol Infect Dis 68:101390

Article  PubMed  Google Scholar 

Aziz RK, Kotb M (2008) Rise and persistence of global M1T1 clone of Streptococcus pyogenes. Emerg Infect Dis 14:1511–1517

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jespersen MG, Lacey JA, Tong SYC et al (2020) Global genomic epidemiology of Streptococcus pyogenes. Infect Genet Evol 86:104609

Article  PubMed  CAS  Google Scholar 

Bamford A, Whittaker E (2023) Resurgence of group A streptococcal disease in children. BMJ 380:43

Article  PubMed  Google Scholar 

Frost I, Balachandran A, Paulin-Deschenaux S et al (2022) The approach of World Health Organization to articulate the role and assure impact of vaccines against antimicrobial resistance. Hum Vaccin Immunother 18:2145069

Article  PubMed  PubMed Central  Google Scholar 

Sulis G, Sayood S, Gandra S (2022) Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev Anti Infect Ther 20:147–160

Article  PubMed  CAS  Google Scholar 

Who (2022) Global antimicrobial resistance and use surveillance system (GLASS) report 2022. https://www.who.int/publications/i/item/9789240062702

European Centre for Disease Prevention and Control (2022) Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual epidemiological report 2021. ECDC, Stockholm

Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion (2022)  COVID-19: U.S. impact on antimicrobial resistance, special report 2022. https://stacks.cdc.gov/view/cdc/117915

Hover BM, Kim SH, Katz M et al (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415–422

Article  PubMed  PubMed Central  CAS  Google Scholar 

Piewngam P, Zheng Y, Nguyen TH et al (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562:532–537

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang F, Wang B, Liu S et al (2021) Bacillus subtilis revives conventional antibiotics against Staphylococcus aureus osteomyelitis. Microb Cell Fact 20:102

Comments (0)

No login
gif