Neuro–bone tissue engineering: emerging mechanisms, potential strategies, and current challenges

Marrella, A. et al. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today (Kidlington, Engl.) 21, 362–376 (2018).

Article  CAS  Google Scholar 

Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, M. et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koons, G. L., Diba, M. & Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Materials 5, 584–603 (2020).

Article  CAS  Google Scholar 

Wan, Q. et al. Simultaneous regeneration of bone and nerves through materials and architectural design: are we there yet. Adv. Funct. Mater. 30, 2003542 (2020).

Article  CAS  Google Scholar 

Qin, Q. et al. Neurovascular coupling in bone regeneration. Exp. Mol. Med. 54, 1844–1849 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burger, M. G. et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater. 149, 111–125 (2022).

Article  CAS  PubMed  Google Scholar 

Liu, S. et al. Nerves within bone and their application in tissue engineering of bone regeneration. Front. Neurol. 13, 1085560 (2022).

Article  PubMed  Google Scholar 

Gajda, M., Adriaensen, D. & Cichocki, T. Development of the innervation of long bones: expression of the growth-associated protein 43. Folia Histochem. Cytobiol. 38, 103–110 (2000).

CAS  PubMed  Google Scholar 

Li, Z. et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J. Clin. Invest. 129, 5137–5150 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomlinson, R. E. et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 16, 2723–2735 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, J. et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci. Adv. 8, eabl5716 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, R. et al. Hallmarks of peripheral nerve function in bone regeneration. Bone Res. 11, 6 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leroux, A., Paiva Dos Santos, B., Leng, J., Oliveira, H. & Amédée, J. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun. Signal. 18, 162 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. & Haga, N. Skeletal complications in congenital insensitivity to pain with anhidrosis: a case series of 14 patients and review of articles published in Japanese. J. Orthop. Sci. 19, 827–831 (2014).

Article  PubMed  Google Scholar 

Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076–1093 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Simon, A. & Tanaka, E. M. Limb regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2, 291–300 (2013).

Article  PubMed  Google Scholar 

Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 362, eaaq0681 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Cao, Z. et al. Calcineurin controls proximodistal blastema polarity in zebrafish fin regeneration. Proc. Natl. Acad. Sci. USA. 118, e2009539118 (2021).

Article  CAS  PubMed  Google Scholar 

Stocum, D. L. The role of peripheral nerves in urodele limb regeneration. Eur. J. Neurosci. 34, 908–916 (2011).

Article  PubMed  Google Scholar 

Endo, T., Bryant, S. V. & Gardiner, D. M. A stepwise model system for limb regeneration. Dev. Biol. 270, 135–145 (2004).

Article  CAS  PubMed  Google Scholar 

Kumar, A. & Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 35, 691–699 (2012).

Article  CAS  PubMed  Google Scholar 

Dolan, C. P. et al. Axonal regrowth is impaired during digit tip regeneration in mice. Dev. Biol. 445, 237–244 (2019).

Article  CAS  PubMed  Google Scholar 

Xu, Y. et al. Inferior alveolar nerve transection disturbs innate immune responses and bone healing after tooth extraction. Ann. N. Y. Acad. Sci. 1448, 52–64 (2019).

Article  CAS  PubMed  Google Scholar 

Cao, J. et al. Sensory nerves affect bone regeneration in rabbit mandibular distraction osteogenesis. Int J. Med Sci. 16, 831–837 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felgueiras, H. P. Emerging antimicrobial and immunomodulatory fiber-based scaffolding systems for treating diabetic foot ulcers. Pharmaceutics. 15, 258 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louiselle, A. E., Niemiec, S. M., Zgheib, C. & Liechty, K. W. Macrophage polarization and diabetic wound healing. Transl. Res. 236, 109–116 (2021).

Article  CAS  PubMed  Google Scholar 

Nowak, N. C., Menichella, D. M., Miller, R. & Paller, A. S. Cutaneous innervation in impaired diabetic wound healing. Transl. Res. 236, 87–108 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, F. X. et al. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog. Retin Eye Res. 89, 101039 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leal, E. C. et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am. J. Pathol. 185, 1638–1648 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Role of VIP and sonic hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas. Diabetes 69, 1549–1561 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yagi, S., Hirata, M., Miyachi, Y. & Uemoto, S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int. J. Mol. Sci. 21, 8414 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, B. M., Oderberg, I. M. & Goessling, W. Hepatic nervous system in development, regeneration, and disease. Hepatology 74, 3513–3522 (2021).

Article  CAS  PubMed  Google Scholar 

Tanaka, K., Ohkawa, S., Nishino, T., Niijima, A. & Inoue, S. Role of the hepatic branch of the vagus nerve in liver regeneration in rats. Am. J. Physiol. 253, G439–G444 (1987).

CAS  PubMed  Google Scholar 

Izumi, T. et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat. Commun. 9, 5300 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizutani, T. et al. Calcitonin gene-related peptide regulates the early phase of liver regeneration. J. Surg. Res. 183, 138–145 (2013).

Article  CAS  PubMed  Google Scholar 

Laschinger, M. et al. The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating liver. FASEB J. 34, 8125–8138 (2020).

Article  CAS  PubMed  Google Scholar 

Kim, J. H. et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. 11, 1025 (2020).

Article 

Comments (0)

No login
gif