Mokdad, A. H. et al. The state of US health, 1990-2016. JAMA 319, 1444–1472 (2018).
Article PubMed PubMed Central Google Scholar
Katz, J. N. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J. Bone Jt. Surg. Ser. A 88, 21–24 (2006).
Cheung, K. M. C. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Philos. Pa 1976) 34, 934–940 (2009).
Chou, R. et al. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann. Intern. Med. 147, 478–491 (2007).
Roberts, S., Evans, H., Trivedi, J. & Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Jt. Surg. Ser. A 88, 10–14 (2006).
Airaksinen, O. et al. Chapter 4: European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 15, S192–300 (2006).
Article PubMed PubMed Central Google Scholar
Dowdell, J. et al. Intervertebral disk degeneration and repair. Clin. Neurosurg. 80, S46–S54 (2017).
Dvořák, J., Vajda, E. G., Grob, D. & Panjabi, M. M. Normal motion of the lumbar spine as related to age and gender. Eur. Spine J. 4, 18–23 (1995).
Adams, M. A. & Hutton, W. C. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J. Bone Jt. Surg. Ser. B 62, 358–362 (1980).
Huang, Y.-C., Urban, J. P. G. & Luk, K. D. K. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 1–6 (2014).
Tsantrizos, A., Ito, K., Aebi, M. & Steffen, T. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine (Philos. Pa 1976) 30, 2129–2137 (2005).
Uematsu, Y., Matuzaki, H. & Iwahashi, M. Effects of nicotine on the intervertebral disc: an experimental study in rabbits. J. Orthop. Sci. 6, 77–82 (2001).
Vo, N. et al. Differential effects of nicotine and tobacco smoke condensate on human annulus fibrosus cell metabolism. J. Orthop. Res. 29, 1585–1591 (2011).
Article CAS PubMed Google Scholar
Singh, D., Park, W., Hwang, D. & Levy, M. S. Severe obesity effect on low back biomechanical stress of manual load lifting. Work 51, 337–348 (2015).
Vadalà, G. et al. Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by T1ρ’ -magnetic resonance imaging. Spine (Philos. Pa 1976) 39, 1881–1886 (2014).
UN. World Population Prospects 2019 (Department of Economic and Social Affairs, 2019).
Munir, S. et al. Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a longitudinal study from Twinsuk. Spine (Philos. Pa 1976) 43, 1496–1501 (2018).
Battié, M. C. et al. The twin spine study: contributions to a changing view of disc degeneration. Spine J. 9, 47–59 (2009).
Toktaş, Z. O. et al. Association of collagen I, IX and vitamin D receptor gene polymorphisms with radiological severity of intervertebral disc degeneration in Southern European Ancestor. Eur. Spine J. 24, 2432–2441 (2015).
Takahashi, M. et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J. Bone Jt. Surg. Ser. B 83, 491–495 (2001).
Huang, X. et al. Interleukin 6 (IL-6) and IL-10 promoter region polymorphisms are associated with risk of lumbar disc herniation in a Northern Chinese han population. Genet. Test. Mol. Biomark. 21, 17–23 (2017).
Guerin, H. L. & Elliott, D. M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelstic model. J. Orthop. Res. 25, 508–516 (2007).
O’Connell, G. D., Jacobs, N. T., Sen, S., Vresilovic, E. J. & Elliott, D. M. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J. Mech. Behav. Biomed. Mater. 4, 933–942 (2011).
Article PubMed PubMed Central Google Scholar
Roberts, S. Disc morphology in health and disease. Biochem. Soc. Trans. 30, 864–869 (2002).
Article CAS PubMed Google Scholar
Chanchairujira, K. et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230, 499–503 (2007).
Boos, N. et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Philos. Pa 1976) 27, 2631–2644 (2002).
Novais, E. J. et al. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, e13148 (2020).
Article CAS PubMed PubMed Central Google Scholar
Yee, A. et al. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthr. Cartil. 24, 503–13 (2016).
Roberts, S., Bains, M. A., Kwan, A., Menage, J. & Eisenstein, S. M. Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem. J. 30, 89–95 (1998).
Article CAS PubMed Google Scholar
Vo, N. et al. Accelerated aging of intervertebral discs in a mouse model of progeria. J. Orthop. Res. 28, 1600–1607 (2010).
Article CAS PubMed PubMed Central Google Scholar
Bachmeier, B. E. et al. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur. Spine J. 18, 1573–1586 (2009).
Article PubMed PubMed Central Google Scholar
Hristova, G. I. et al. Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. 29, 1888–95 (2011).
Shao, J. et al. Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet. Disord. 17, 191 (2016).
Article PubMed PubMed Central Google Scholar
Teraguchi, M. et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthr. Cartil. 22, 104–110 (2014).
Zehra, U. et al. Mechanisms and clinical implications of intervertebral disc calcification. Nat. Rev. Rheumatol. 18, 352–362 (2022).
Article PubMed PubMed Central Google Scholar
Bangert, B. A. et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195, 437–443 (1995).
Article CAS PubMed Google Scholar
Weinberger, A. & Myers, A. R. Intervertebral disc calcification in adults: a review. Semin. Arthritis Rheum. 8, 69–75 (1978).
Article CAS PubMed Google Scholar
Stigen, Ø., Ciasca, T. & Kolbjørnsen, Ø. Calcification of extruded intervertebral discs in dachshunds: a radiographic, computed tomographic and histopathological study of 25 cases. Acta Vet. Scand. 61, 13 (2019).
Article PubMed PubMed Central Google Scholar
Park, J. et al. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage. Biol. Open 4, 608–621 (2015).
Article PubMed PubMed Central Google Scholar
Jin, L. et al. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 9, e96519 (2014).
Article PubMed PubMed Central Google Scholar
Zhao, Y. P. et al. Progranulin knockout accelerates intervertebral disc degeneration in aging mice. Sci. Rep. 5, 9102 (2015).
Article CAS PubMed PubMed Central Google Scholar
Stokes, I. A. F. & Iatridis, J. C. Mechanical conditions that accelerate intervertebral disc degeneration: Overload versus immobilization. Spine 29, 2724–2732 (2004).
Article PubMed PubMed Central Google Scholar
Roberts, S., Menage, J. & Eisenstein, S. M. The cartilage end‐plate and intervertebral disc in scoliosis: calcification and other sequelae. J. Orthop. Res. 11, 747–757 (1993).
Comments (0)