The Rotation Number for Almost Periodic Potentials with Jump Discontinuities and $$\delta $$ -Interactions

Besicovitch, A.S.: Almost Periodic Functions. Dover Publications, New York (1954)

Google Scholar 

Bohr, H.: Almost Periodic Functions. Chelsea, New York (1956)

Google Scholar 

Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Probability and its Applications. Birkhäuser, Boston (1990)

Book  Google Scholar 

Chen, B., Dai, X.: On uniformly recurrent motions of topological semigroup actions. Discrete Contin. Dyn. Syst. 36, 2931–2944 (2016)

MathSciNet  Google Scholar 

Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergod. Theory Dyn. Syst. 37, 1681–1764 (2017)

Article  Google Scholar 

Damanik, D., Fillman, J.: Gap labelling for discrete one-dimensional ergodic Schrödinger operators. In: From Complex Analysis to Operator Theory: A Panorama, Operator Theory: Advances and Applications, vol. 291, pp. 341–404. Birkhäuser/Springer, Cham (2023)

Damanik, D., Zhou, Z.: The rotation number for the almost periodic Schrödinger operator with \(\delta \)-potentials. J. Dyn. Differ. Equ. 34, 155–177 (2022)

Article  Google Scholar 

Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)

Google Scholar 

Fink, A.: Almost Periodic Differential Equations. Springer, Berlin (1974)

Book  Google Scholar 

Gottschalk, W.H.: Almost periodicity, equi-continuity and total boundedness. Bull. Am. Math. Soc. 52, 633–636 (1946)

Article  MathSciNet  Google Scholar 

Gottschalk, W.H.: Almost periodic points with respect to transformation semi-groups. Ann. Math. (2) 47, 762–766 (1946)

Article  MathSciNet  Google Scholar 

Hale, J.K.: Ordinary Differential Equations, 2nd edn. Wiley, New York (1980)

Google Scholar 

Johnson, R.: Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61, 54–78 (1986)

Article  ADS  MathSciNet  Google Scholar 

Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

Article  ADS  MathSciNet  Google Scholar 

Karpeshina, Y., Parnovski, L., Shterenberg, R.: Bethe-Sommerfeld conjecture and absolutely continuous spectrum of multi-dimensional quasi-periodic Schrödinger operators. arXiv:2010.05881

Kellendonk, J., Lenz, D.: Equicontinuous Delone dynamical systems. Canad. J. Math. 65, 149–170 (2013)

Article  MathSciNet  Google Scholar 

Kelley, J.L.: General Topology. D. Van Nostrand Company Inc, Toronto (1955)

Google Scholar 

Lee, J., Lenz, D., Richard, C., Sing, B., Strungaru, N.: Modulated crystals and almost periodic measures. Lett. Math. Phys. 110(12), 3435–3472 (2020)

Article  ADS  MathSciNet  Google Scholar 

Lenz, D., Stollmann, P.: An ergodic theorem for Delone dynamical systems and existence of the integrated density of states. J. Anal. Math. 97, 1–24 (2005)

Article  MathSciNet  Google Scholar 

Lenz, D., Strungaru, N.: On weakly almost periodic measures. Trans. Am. Math. Soc. 371, 6843–6881 (2019)

Article  MathSciNet  Google Scholar 

Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982)

Google Scholar 

Long, Y.: Index Theory for Symplectic Paths with Applications. Birkhäuser, Basel (2002)

Book  Google Scholar 

Meng, G., Zhang, M.: Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differ. Equ. 254, 2196–2232 (2013)

Article  ADS  MathSciNet  Google Scholar 

Pastur, A.L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

Book  Google Scholar 

Qi, L., Yuan, R.: A generalization of Bochner’s theorem and its applications in the study of impulsive differential equations. J. Dyn. Differ. Equ. 31, 1955–1985 (2019)

Article  MathSciNet  Google Scholar 

Samoilenko, A.M., Perestyuk, N.A.: Impulsive differential equations, with a supplement by S. I. Trofimchuk. In: World Scientific Series on Nonlinear Science Series A, vol. 14. World Scientific Publishing Co., Inc., River Edge, NJ (1995)

Seifert, C.: Measure-perturbed one-dimensional Schrödinger operators—A continuum model for quasicrystals. Doctoral Dissertation Thesis, Chemnitz University of Technology (2012)

Sell, G.R.: Compact sets of nonlinear operators. Funkcial. Ekvac. 11, 131–138 (1968)

MathSciNet  Google Scholar 

Shen, W., Yi, Y.: Almost automorphic and almost periodic dynamics in skew-product semiflows. Mem. Am. Math. Soc. 136, 647 (1998)

MathSciNet  Google Scholar 

Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

Book  Google Scholar 

Zhang, M.: From almost periodic functions to measures: a unified dynamics approach

Zhang, M., Zhou, Z.: Uniform ergodic theorems for discontinuous skew-product flows and applications to Schrödinger equations. Nonlinearity 24, 1539–1564 (2011)

Article  ADS  MathSciNet  Google Scholar 

Zhou, Z.: The rotation number of the linear Schrödinger equation with discontinuous almost periodic potentials. J. Differ. Equ. 259, 4202–4228 (2015)

Article  ADS  Google Scholar 

Comments (0)

No login
gif
Back To Top