Toxicology and Metabolic Effects of Methanol and Formaldehyde on the Brain, a Review Article

Kostic MA, Dart RC. Rethinking the toxic methanol level. Journal of Toxicology: Clinical Toxicology. 2003; 41(6):793-800. [DOI:10.1081/CLT-120025344] [PMID]

Zhai R, Zheng N, Rizak J, Hu X. Evidence for conversion of methanol to formaldehyde in nonhuman primate brain. Analytical Cellular Pathology. 2016; 2016:4598454. [DOI:10.1155/2016/4598454] [PMID]

Yang M, Miao J, Rizak J, Zhai R, Wang Z, Huma T, et al. Alzheimer's disease and methanol toxicity (part 2): Lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. Journal of Alzheimer’s Disease. 2014; 41(4):1131-47. [DOI:10.3233/JAD-131532] [PMID]

Chen JM, Zhu GY, Xia WT, Zhao ZQ. Proteomic analysis of rat retina after methanol intoxication. Toxicology. 2012; 293(1-3):89-96. [DOI:10.1016/j.tox.2012.01.002] [PMID]

Batterman SA, Franzblau A. Time-resolved cutaneous absorption and permeation rates of methanol in human volunteers. International Archives of Occupational and Environmental Health. 1997; 70(5):341-51. [DOI:10.1007/s004200050228] [PMID]

Yang M, Lu J, Miao J, Rizak J, Yang J, Zhai R, et al. Alzheimer's disease and methanol toxicity (part 1): Chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. Journal of Alzheimer’s Disease. 2014; 41(4):1117-29. [DOI:10.3233/JAD-131529] [PMID]

MacAllister SL, Choi J, Dedina L, O'Brien PJ. Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: Carbonyl-metabolizing enzymes versus oxidative stress. Chemico-Biological Interactions. 2011;191(1-3):308-14. [DOI:10.1016/j.cbi.2011.01.017] [PMID]

Hassanian-Moghaddam H, Pajoumand A, Dadgar SM, Shadnia Sh. Prognostic factors in methanol poisoning. Human & Experimental Toxicology. 2007; 26(7):583-6. [DOI:10.1177/0960327106080077] [PMID]

Eells JT. Methanol-induced visual toxicity in the rat. Journal of Pharmacology and Experimental Therapeutics. 1991; 257(1):56-63. [PMID] [Link]

Teng S, Beard K, Pourahmad J, Moridani M, Easson E, Poon R, et al. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chemico-Biological Interactions. 2001; 130-132(1-3):285-96. [DOI:10.1016/S0009-2797(00)00272-6] [PMID]

Staab CA, Alander J, Morgenstern R, Grafström RC, Höög JO. The Janus face of alcohol dehydrogenase 3. Chemico-Biological Interactions. 2009; 178(1-3):29-35. [DOI:10.1016/j.cbi.2008.10.050] [PMID]

Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, et al. A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. Journal of Alzheimer’s Disease. 2014; 40(4):1039-53. [DOI:10.3233/JAD-131595] [PMID]

Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J, et al. Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase.Journal of Biological Chemistry. 2006; 281(27):18335-42. [DOI:10.1074/jbc.M510623200] [PMID]

Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV, Krupenko SA. ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase.Journal of Biological Chemistry. 2010; 285(30):23056-63. [DOI:10.1074/jbc.M110.128843] [PMID]

Tulpule K, Hohnholt MC, Dringen R. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. Journal of Neurochemistry. 2013; 125(2):260-72. [DOI:10.1111/jnc.12170] [PMID]

Bouchard M, Brunet RC, Droz PO, Carrier G. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans. Toxicological Sciences. 2001; 64(2):169-84. [DOI:10.1093/toxsci/64.2.169] [PMID]

Cejnar P, Smirnova TA, Kuckova S, Prochazka A, Zak I, Harant K, et al. Acute and chronic blood serum proteome changes in patients with methanol poisoning. Scientific Reports. 2022; 12(1):21379. [DOI:10.1038/s41598-022-25492-9] [PMID]

Zakharov S, Hlusicka J, Nurieva O, Kotikova K, Lischkova L, Kacer P, et al. Neuroinflammation markers and methyl alcohol induced toxic brain damage. Toxicology Letters. 2018; 298:60-9. [DOI:10.1016/j.toxlet.2018.05.001] [PMID]

Zamani N, Rafizadeh A, Hassanian-Moghaddam H, Akhavan-Tavakoli A, Ghorbani-Samin M, et al. Evaluation of methanol content of illegal beverages using GC and an easier modified Chromotropic acid method; a cross sectional study. Substance Abuse Treatment, Prevention, and Policy. 2019; 14(1):56. [DOI:10.1186/s13011-019-0244-z] [PMID]

Givens M, Kalbfleisch K, Bryson S. Comparison of methanol exposure routes reported to Texas poison control centers. Western Journal of Emergency Medicine. 2008; 9(3):150. [PMID] [PMCID]

European Food Safety Authority. Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. EFSA Journal. 2014; 12(2):3550. [DOI:10.2903/j.efsa.2014.3550]

Lee ES, Chen H, Hardman C, Simm A, Charlton C. Excessive S-adenosyl-L-methionine-dependent methylation increases levels of methanol, formaldehyde and formic acid in rat brain striatal homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson's disease-like disorders. Life Sciences. 2008; 83(25-26):821-7. [DOI:10.1016/j.lfs.2008.09.020] [PMID]

Trolin CG, Löfberg C, Trolin G, Oreland L. Brain ATP: L-methionine S-adenosyltransferase (MAT), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH): Regional distribution and age-related changes. European Neuropsychopharmacology. 1994; 4(4):469-77. [DOI:10.1016/0924-977X(94)90295-X] [PMID]

Zimatkin SM. Histochemical study of aldehyde dehydrogenase in the rat CNS. Journal of Neurochemistry. 1991; 56(1):1-11. [DOI:10.1111/j.1471-4159.1991.tb02555.x] [PMID]

Zamani N, Hassanian-Moghaddam H, Shojaei M, Rahimian S. Evaluation of the effect of erythropoietin + corticosteroid versus corticosteroid alone in methanol-induced optic nerve neuropathy. Cutaneous and Ocular Toxicology. 2018; 37(2):186-90. [DOI:10.1080/15569527.2017.1373121] [PMID]

Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harbor Perspectives in Medicine. 2012; 2(12):a009621. [DOI:10.1101/cshperspect.a009621] [PMID]

Bangiyev L, Roudenko A, Raz E, Dietrich A, Fatterpekar GM. Neurodegenerative disorders of the basal ganglia. In: Saba L, editor. Imaging in neurodegenerative disorders. Oxford: Oxford Academic; 2015. [DOI:10.1093/med/9780199671618.003.0030]

Jeganathan PS, Namasivayam A. Methanol-induced monoamine changes in hypothalamus and striatum of albino rats. Alcohol. 1989; 6(6):451-4. [DOI:10.1016/0741-8329(89)90050-5] [PMID]

Mackey VR, Muthian G, Smith M, King J, Charlton CG. Prenatal exposure to methanol as a dopamine system sensitization model in C57BL/6J mice. Life Sciences. 2012; 91(19-20):921-7. [DOI:10.1016/j.lfs.2012.09.010] [PMID]

Sandhir R, Kaur K. Influence of ethanol on methanol-induced oxidative stress and neurobehavioral deficits. Journal of Biochemical and Molecular Toxicology. 2006; 20(5):247-54. [DOI:10.1002/jbt.20141] [PMID]

Peterová K, Brožová H, Klempíř J, Lišková I, Bezdicek O, Ridzoň P, et al. Gait and balance impairment after acute methanol poisoning. Basic & Clinical Pharmacology & Toxicology. 2018; 122(1):176-82. [DOI:10.1111/bcpt.12853] [PMID]

Zakharov S, Kotikova K, Nurieva O, Hlusicka J, Kacer P, Urban P, et al. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning. Clinical Toxicology. 2017; 55(4):249-59. [DOI:10.1080/15563650.2017.1284332] [PMID]

Karayel F, Turan AA, Sav A, Pakis I, Akyildiz EU, Ersoy G. Methanol intoxication: Pathological changes of central nervous system (17 cases). The American Journal of Forensic Medicine and Pathology. 2010; 31(1):34-6. [DOI:10.1097/PAF.0b013e3181c160d9] [PMID]

Taheri MS, Moghaddam HH, Moharamzad Y, Dadgari S, Nahvi V. The value of brain CT findings in acute methanol toxicity. European Journal of Radiology. 2010; 73(2):211-4. [DOI:10.1016/j.ejrad.2008.11.006] [PMID]

Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences. 2009; 106(34):14670-5. [DOI:10.1073/pnas.0903563106] [PMID]

Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H. Mitochondrial ALDH2 deficiency as an oxidative stress. Mitochondrial Pathogenesis: From Genes and Apoptosis to Aging and Disease. 2004; 1011:36-44. [DOI:10.1007/978-3-662-41088-2_4] [PMID]

Takeshita T, Morimoto K, Mao X, Hashimoto T, Furuyama J. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Human Genetics. 1994; 94(3):217-23. [DOI:10.1007/BF00208273] [PMID]

Chen J, Huang W, Cheng CH, Zhou L, Jiang GB, Hu YY. Association between aldehyde dehydrogenase-2 polymorphisms and risk of Alzheimer's disease and Parkinson's disease: A meta-analysis based on 5,315 individuals. Frontiers in Neurology. 2019; 10:290. [DOI:10.3389/fneur.2019.00290] [PMID]

Kim JM, Stewart R, Shin IS, Jung JS, Yoon JS. Assessment of association between mitochondrial aldehyde dehydrogenase polymorphism and Alzheimer's disease in an older Korean population. Neurobiology of Aging. 2004; 25(3):295-301. [DOI:10.1016/S0197-4580(03)00114-3] [PMID]

Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age. 2013; 35(3):583-96. [DOI:10.1007/s11357-012-9388-8] [PMID]

Yue X, Mei Y, Zhang Y, Tong Z, Cui D, Yang J, et al. New insight into Alzheimer's disease: Light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2019; 5:671-84. [DOI:10.1016/j.trci.2019.09.007] [PMID]

Berman MH, Halper JP, Nichols TW, Jarrett H, Lundy A, Huang JH. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. Journal of Neurology and Neuroscience. 2017; 8(1):176. [DOI:10.21767/2171-6625.1000176] [PMID]

Nizamutdinov D, QiX, Berman MH, Dougal G, Dayawansa S, Wu E, et al. Transcranial near infrared light stimulations improve cognition in patients with dementia. Aging and Disease. 2021; 12(4):954. [DOI:10.14336/AD.2021.0229] [PMID]

Harris C, Wang SW, Lauchu JJ, Hansen JM. Methanol metabolism and embryotoxicity in rat and mouse conceptuses: Comparisons of Alcohol Dehydrogenase (ADH1), formaldehyde dehydrogenase (ADH3), and catalase. Reproductive Toxicology. 2003; 17(3):349-57. [DOI:10.1016/S0890-6238(03)00013-3] [PMID]

Kraut JA. Approach to the treatment of methanol intoxication. American Journal of Kidney Diseases. 2016; 68(1):161-7. [DOI:10.1053/j.ajkd.2016.02.058] [PMID]

Ke YJ, Qin XD, Zhang YC, Li H, Li R, Yuan JL, et al. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives. Human & Experimental Toxicology. 2014; 33(8):822-30. [DOI:10.1177/0960327113510538] [PMID]

Pitten FA, Kramer A, Herrmann K, Bremer J, Koch S. Formaldehyde neurotoxicity in animal experiments. Pathology-Research and Practice. 2000; 196(3):193-8. [DOI:10.1016/S0344-0338(00)80100-4] [PMID]

del Mar Hernandez M, Esteban M, Szabo P, Boada M, Unzeta M. Human plasma Semicarbazide Sensitive Amine Oxidase (SSAO), beta-amyloid protein and aging. Neuroscience Letters. 2005; 384(1-2):183-7. [DOI:10.1016/j.neulet.2005.04.074] [PMID]

Hlusicka J, Mana J, Vaneckova M, Kotikova K, Diblik P, Urban P, et al. MRI-based brain volumetry and retinal optical coherence tomography as the biomarkers of outcome in acute methanol poisoning. Neurotoxicology. 2020; 80:12-19. [DOI:10.1016/j.neuro.2020.06.006] [PMID]

Blednov YA, Benavidez JM, Black M, Mayfield J, Harris RA. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology. 2015; 95:309-20. [DOI:10.1016/j.neuropharm.2015.03.015] [PMID]

Kotikova K, Zogala D, Ptacnik V, Trnka J, Kupka K, Vaneckova M, et al. Efficiency of 123I-ioflupane SPECT as the marker of basal ganglia damage in acute methanol poisoning: 6-year prospective study. Clinical Toxicology. 2021; 59(3):235-45. [DOI:10.1080/15563650.2020.1802033] [PMID]

Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, et al. Aging-associated excess formaldehyde leads to spatial memory deficits. Scientific Reports. 2013; 3:1807. [DOI:10.1038/srep01807] [PMID]

Fei X, Zhang Y, Mei Y, Yue X, Jiang W, Ai L, et al. Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes. Molecular Psychiatry. 2021; 26(10):5578-91. [DOI:10.1038/s41380-020-00929-7] [PMID]

Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Research Reviews. 2022; 73:101512. [DOI:10.1016/j.arr.2021.101512] [PMID]

Wang J, Gu Y, Liu X, Fan Y, Zhang Y, Yi C, et al. Near-Infrared photothermally enhanced photo-oxygenation for inhibition of amyloid-β aggregation based on RVG-conjugated porphyrinic metal-organic framework and indocyanine green nanoplatform. International Journal of Molecular Sciences. 2022; 23(18):10885. [DOI:10.3390/ijms231810885] [PMID]

Comments (0)

No login
gif