Transforaminal lumbar interbody fusion with a tantalum cage: lumbar lordosis redistribution and sacral slope restoration with a modified posterior technique

Resnick DK, Choudhri TF, Dailey AT, Groff MW, Khoo L, Matz PG, Hadley MN (2005) Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine 2(6):673–678

Article  PubMed  Google Scholar 

Mummaneni PV, Dhall SS, Eck JC, Groff MW, Ghogawala Z, Watters WC III, Kaiser MG (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: Interbody techniques for lumbar fusion. J Neurosurg Spine 21(1):67–74

Article  PubMed  Google Scholar 

Teng I, Han J, Phan K, Mobbs R (2017) A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J Clin Neurosci 44:11–17

Article  PubMed  Google Scholar 

Yang Y, Zhang L, Liu B, Pang M, Xie P et al (2017) Hidden and overall haemorrhage following minimally invasive and open transforaminal lumbar interbody fusion. J Orthop Traumatol 18(4):395–400

Article  PubMed  PubMed Central  Google Scholar 

Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg Spine 91(1):60–64

Article  CAS  Google Scholar 

Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, Liu JC (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7(4):379–386

Article  PubMed  Google Scholar 

Mobbs RJ, Phan K, Daly D, Rao PJ, Lennox A (2016) Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global Spine J 6(2):147–154

Article  PubMed  Google Scholar 

Mobbs RJ, Phan K, Thayaparan GK, Rao PJ (2016) Anterior lumbar interbody fusion as a salvage technique for pseudarthrosis following posterior lumbar fusion surgery. Global Spine J 6(1):14–20

Article  PubMed  Google Scholar 

Madhu TS (2008) Posterior and anterior lumbar interbody fusion. Curr Orthopaedics 22(6):406–413

Article  Google Scholar 

Suzanne LDK, Sander MJVK, Kim R, Inge JMHC, Wouter van Hemert LW, Robde A, van Santbrink H (2017) Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J 17(11):1712–1721

Article  Google Scholar 

Phan K, Rao PJ, Kam AC, Mobbs RJ (2015) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J 24(5):1017–1030

Article  PubMed  Google Scholar 

Black J (1994) Biological performance of tantalum. Clin Mater 16:167–173

Article  CAS  PubMed  Google Scholar 

Sinclair SK, Konz GJ, Dawson JM, Epperson RT, Bloebaum RD (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine 37:E571–E580

Article  PubMed  Google Scholar 

Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187

Article  CAS  PubMed  Google Scholar 

Brown TD, Heiner AD, Poggie RA, Fitzpatrick DC, Ahn PB, Zhang Y (1999) Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskelet Res 03:245–251

Stiehl JB (2005) Trabecular metal in hip reconstructive surgery. Orthopedics 28:662–670

Article  PubMed  Google Scholar 

Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg 81B:907–914

Article  Google Scholar 

Paganias CG, Tsakotos GA, Koutsostathis SD, Macheras GA (2012) Osseous integration in porous tantalum implants. Indian J Orthop 46(5):505–513

Article  PubMed  PubMed Central  Google Scholar 

Ebied AM, Ebied AA, Marei S, Smith E (2019) Enhancing biology and providing structural support for acetabular reconstruction in single-stage revision for infection. J Orthop Traumatol 20(1):23

Article  PubMed  PubMed Central  Google Scholar 

Levine BR et al (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27(27):4671–4681

Article  CAS  PubMed  Google Scholar 

Sidhu KS et al (2001) Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J 1(5):331–340

Article  CAS  PubMed  Google Scholar 

Zou X et al (2005) Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine 30(14):E392–E399. https://doi.org/10.1097/01.brs.0000170588.80377.3f

Article  PubMed  Google Scholar 

Zou X et al (2004) Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: an experimental study in pigs. Spine J 4(1):99–105

Wigfield C et al (2003) Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial. Br J Neurosurg 17(5):418–425

Article  CAS  PubMed  Google Scholar 

Thomas AS, Bruce R, Gert M, Manfred K (2006) Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma 20(7):476–484

Article  Google Scholar 

Schildhauer TA, Peter E, Muhr G, Köller M (2009) Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. J Biomed Mater Res A 88(2):332–341

Article  CAS  PubMed  Google Scholar 

Harrison PL, Harrison T, Stockley I, Smith TJ (2017) Does tantalum exhibit any intrinsic antimicrobial or antibiofilm properties? Bone Joint J. 99-B(9):1153–1156

Article  CAS  PubMed  Google Scholar 

Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine 25:2940–2952

Mobbs RJ, Phan K, Malham G, Seex K, Rao JP (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1(1):2–18

PubMed  PubMed Central  Google Scholar 

Kida K, Tadokoro N, Kumon M et al (2014) Can cantilever transforaminal lumbar interbody fusion (C-TLIF) maintain segmental lordosis for degenerative spondylolisthesis on a long-term basis? Arch Orthop Trauma Surg 134:311–315

Article  PubMed  Google Scholar 

Bobyn JD, Stackpool GJ, Hacking SA et al (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 81:907–914

Article  CAS  PubMed  Google Scholar 

Cohen R (2002) A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ) 31:216–217

PubMed  Google Scholar 

Kasliwal MK, Baskin DS, Traynelis VC (2013) Failure of porous tantalum cervical interbody fusion devices. J Spinal Disord Tech 26(5):239

Article  PubMed  Google Scholar 

Black J (1994) Biological performance of tantulum. Clin Mater 16:167

Article  CAS  PubMed  Google Scholar 

Tummler H, Thull R (1985) Model of the metal/tissue connection of implants made of titanium or tantalum. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performances of biomaterials. Elsevier, Amsterdam, pp 403–408

Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G (2011) Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res 28:609–616

Article  Google Scholar 

Jadhakhan F, Bell D, Rushton A (2023) Outcomes of surgical intervention for degenerative lumbar spondylolisthesis: a comparative analysis of different surgical fixation techniques. J Spine Surg 9(1):83–97

Article  PubMed  PubMed Central  Google Scholar 

Kirk CM, Easley J, Seim HB, Regan D, Berven SH, Hsu WH, Mroz TE, Puttlitz CM (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 18(7):1250–1260

Article  Google Scholar 

Malloy JP, Beutler W, Peppelman W, Harris R, Slotkin E, Gillette J (2010) Clinical outcomes with porous tantalum in lumbar interbody fusion. Spine J 10:147–148

Article  Google Scholar 

Levi AD, Choi WG, Keller PJ, Heiserman JE, Sonntag VK, Dickman C (1998) The radiographic and imaging characteristics of porous tantalum implants within the human cervical spine. Spine 23(11):1245–1250 (discussion 1251)

Article  CAS  PubMed  Google Scholar 

Sousa JM, Ribeiro H, Silva JL, Nogueira P, Consciência JG (2022) Clinical outcomes, complications and fusion rates in endoscopic assisted intraforaminal lumbar interbody fusion (iLIF) versus minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): systematic review and meta-analysis. Sci Rep 12:2101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Lee DO, Lee JH, Shim HJ (2015) Effects of lordotic angle of a cage on sagittal alignment and clinical outcome in one level posterior lumbar interbody fusion with pedicle screw fixation. Biomed Res Int 2015:523728

PubMed  PubMed Central  Google Scholar 

Alvi MA, Kurian SJ, Wahood W, Goyal A, Elder BD, Bydon M (2019) Assessing the difference in clinical and radiologic outcomes between expandable cage and nonexpandable cage among patients undergoing minimally invasive transforaminal interbody fusion: a systematic review and meta-analysis. World Neurosurg 127:596-606.e1

Article 

Comments (0)

No login
gif