Warburg O. On the origin of Cancer cells. Science. 1956;123(3191):309–14.
Article CAS PubMed Google Scholar
Cai Z, Zhao J, Li J, Peng D, Wang X, Chen T, Qiu Y, Chen P, Li W, Xu L, et al. A combined proteomics and Metabolomics profiling of gastric Cardia Cancer reveals characteristic dysregulations in glucose Metabolism*. MOL CELL PROTEOMICS. 2010;9(12):2617–28.
Article CAS PubMed PubMed Central Google Scholar
Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, et al. Quantitative metabolome profiling of colon and Stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. CANCER RES. 2009;69(11):4918–25.
Article CAS PubMed Google Scholar
Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH, Yun J, Cho YK, Lee G, Han SU. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS ONE. 2014;9(6):e98581.
Article PubMed PubMed Central Google Scholar
Xiao S, Zhou L. Gastric cancer: metabolic and metabolomics perspectives (review). INT J ONCOL. 2017;51(1):5–17.
Article CAS PubMed Google Scholar
Glimelius B, Ekström K, Hoffman K, Graf W, Sjödén PO, Haglund U, Svensson C, Enander LK, Linné T, Sellsröm H, et al. Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. ANN ONCOL. 1997;8(2):163–8.
Article CAS PubMed Google Scholar
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. FRONT IMMUNOL. 2022;13:1016817.
Article CAS PubMed PubMed Central Google Scholar
Wang JX, Choi SYC, Niu X, Kang N, Xue H, Killam J, Wang Y. Lactic acid and an acidic Tumor Microenvironment suppress Anticancer Immunity. INT J MOL SCI. 2020;21(21):8363.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin MED J-PEKING. 2022;135(20):2405–16.
Song H, Wang L, Liu HL, Wu XB, Wang HS, Liu ZH, Li Y, Diao DC, Chen HL, Peng JS. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. ONCOL REP. 2011;26(2):431–8.
Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. BIOMED CHROMATOGR. 2012;26(5):548–58.
Article CAS PubMed Google Scholar
Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, Sun Y, Shen X. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. ANAL BIOANAL CHEM. 2010;396(4):1385–95.
Article CAS PubMed Google Scholar
Bhattacharya B, Low SHH, Soh C, Kamal Mustapa N, Beloueche Babari M, Koh KX, Loh J, Soong R. Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. BRIT J PHARMACOL. 2014;171(13):3255–67.
Lin LL, Hsia CR, Hsu CL, Huang HC, Juan HF. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics. 2015;16(1):41.
Article CAS PubMed PubMed Central Google Scholar
Buller CL, Loberg RD, Fan M, Zhu Q, Park JL, Vesely E, Inoki K, Guan K, Brosius FC. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. AM J PHYSIOL-CELL PH. 2008;295(3):C836–43.
Ma J, Liu W, Guo H, Li S, Cao W, Du X, Lei S, Hou W, Xiong L, Yao L, et al. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma. BREAST CANCER RES. 2014;16(2):R27.
Article PubMed PubMed Central Google Scholar
Qiu H, Jackson AL, Kilgore JE, Zhong Y, Chan LL, Gehrig PA, Zhou C, Bae-Jump VL. JQ1 suppresses Tumor growth through downregulating LDHA in Ovarian cancer*. Oncotarget. 2015;6(9):6915–30.
Article PubMed PubMed Central Google Scholar
Wu H, Li Z, Yang P, Zhang L, Fan Y, Li Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in Tumor cells. CELL SIGNAL. 2014;26(11):2397–405.
Article CAS PubMed Google Scholar
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage–Induced Modulation ofGLUT3 expression is mediated through p53-Independent Extracellular Signal-regulated kinase signaling in HeLa cells. MOL CANCER RES. 2010;8(11):1547–57.
Article CAS PubMed Google Scholar
RUIZ-LOZANO P, HIXON ML, WAGNER MW, FLORES AI, BALDWIN IKAWAS. CHIEN KR, GUALBERTO A: p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ. 1999;10(5):295–306.
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. NAT REV CANCER. 2011;11(2):85–95.
Article CAS PubMed Google Scholar
Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W. High lactate levels predict likelihood of metastases, Tumor recurrence, and restricted patient survival in human cervical cancers. CANCER RES. 2000;60(4):916–21.
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W. Elevated Tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. INT J RADIAT ONCOL. 2001;51(2):349–53.
Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, Burns WR, Ramachandran V, Wang H, Cruz-Monserrate Z, et al. Cell surface lactate receptor GPR81 is crucial for Cancer Cell Survival. CANCER RES. 2014;74(18):5301–10.
Article CAS PubMed PubMed Central Google Scholar
Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, et al. Targeting lactate-fueled respiration selectively kills hypoxic Tumor cells in mice. J CLIN INVEST. 2008;118(12):3930–42.
CAS PubMed PubMed Central Google Scholar
Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. DIS MODEL MECH. 2011;4(6):727–32.
Article CAS PubMed PubMed Central Google Scholar
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, Ganapathy V. The lactate receptor GPR81 promotes Breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the Tumor microenvironment. Oncogene. 2020;39(16):3292–304.
Article CAS PubMed Google Scholar
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: implications for novel biomarker and anticancer agent development. SEMIN ONCOL. 2017;44(3):198–203.
Article CAS PubMed PubMed Central Google Scholar
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. MOL METAB. 2020;33:48–66.
Article CAS PubMed Google Scholar
Watson MJ, Vignali P, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.
Article CAS PubMed PubMed Central Google Scholar
Kes MMG, Van den Bossche J, Griffioen AW, Huijbers EJM. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim et Biophys Acta (BBA) - Reviews Cancer. 2020;1874(2):188427.
GLADDEN LB. A lactatic perspective on metabolism. Med Sci Sports Exerc. 2008;40(3):477–85.
Ngwa VM, Edwards DN, Philip M, Chen J. Microenvironmental Metabolism regulates Antitumor Immunity. CANCER RES. 2019;79(16):4003–8.
Article CAS PubMed PubMed Central Google Scholar
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 Signaling Pathway Regulates Glucose Metabolism. IMMUNITY 2002, 16(6):769–777.
Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, Liu G. The Monocarboxylate transporter 4 is required for Glycolytic Reprogramming and inflammatory response in Macrophages*. J BIOL CHEM. 2015;290(1):46–55.
Article CAS PubMed Google Scholar
Tu VY, Ayari A, O’Connor RS. Beyond the Lactate Paradox: How Lactate and Acidity Impact T Cell Therapies against Cancer. ANTIBODIES 2021, 10(3).
Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ, Kopinski PK, Wang L, et al. Foxp3 reprograms T cell metabolism to function in Low-Glucose, high-lactate environments. CELL MET
Comments (0)