Direct Electrochemical Determination of Glyphosate Herbicide Using a Screen-Printed Carbon Electrode Modified with Carbon Black and Niobium Nanoparticles

Battisti L, Potrich M, Sampaio AR, de Castilhos GN, Costa-Maia FM, Abati R, Martinez CBR, Sofia SH. Is glyphosate toxic to bees? A meta-analytical review. Sci Total Environ. 2021;767:145397.

Article  CAS  PubMed  Google Scholar 

Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(1):3.

Article  PubMed  PubMed Central  Google Scholar 

Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.

Article  CAS  PubMed  Google Scholar 

Muñoz R, Guevara-Lara A, Santos JLM, Miranda JM, Rodriguez JA. Determination of glyphosate in soil samples using CdTe/CdS quantum dots in capillary electrophoresis. Microchem J. 2019;146:582–7.

Article  Google Scholar 

Amarante Junior OP, Santos TCR, Brito NM, Ribeiro ML. Glifosato: propriedades, toxicidade, usos e legislação. Quim Nova. 2002;25:589–93.

Article  Google Scholar 

Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015;16:490–1.

Article  PubMed  Google Scholar 

WHO. Guidelines for drinking water quality. 3rd ed. World Heal. Organ. Geneva: World Health Organization; 2004.

Ministry of Health. Ordinance nº 2,914 (Annex VII) - Provides for control and surveillance procedures for the quality of water for human consumption and its potability standard. 2011. https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html.

United States Environmental Protection Agency - USEPA. Edition of the drinking water standards and health advisories. 2018.

European Safety Authority - EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015.

Health Canada. Guidelines for canadian drinking water quality: Guideline technical document – Glyphosate. 1987.

Gandhi K, Khan S, Patrikar M, Markad A, Kumar N, Choudhari A, Sagar P. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ Challenges. 2021;4:100149.

Article  CAS  Google Scholar 

Fang F, Wei R, Liu X. Novel pre-column derivatisation reagent for glyphosate by high-performance liquid chromatography and ultraviolet detection. Int J Environ Anal Chem. 2014;94:661–7.

Article  CAS  Google Scholar 

Islas G, Rodriguez JA, Mendoza-Huizar LH, Pérez-Moreno F, Carrillo EG. Determination of glyphosate and aminomethylphosphonic acid in soils by hplc with pre-column derivatization using 1,2-naphthoquinone-4-sulfonate. J Liq Chromatogr Relat Technol. 2014;37:1298–309.

Article  CAS  Google Scholar 

Qian K, Tang T, Shi T, Wang F, Li J, Cao Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal Chim Acta. 2009;635:222–6.

Article  CAS  PubMed  Google Scholar 

Arkan T, Csámpai A, Molnár-Perl I. Alkylsilyl derivatization of glyphosate and aminomethylphosphonic acid followed by gas chromatography mass spectrometry. Microchem J. 2016;125:219–23.

Article  CAS  Google Scholar 

Schütze A, Morales-Agudelo P, Vidal M, Calafat AM, Ospina M. Quantification of glyphosate and other organophosphorus compounds in human urine via ion chromatography isotope dilution tandem mass spectrometry. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2020.129427.

Article  PubMed  PubMed Central  Google Scholar 

De Almeida LKS, Chigome S, Torto N, Frost CL, Pletschke BI. A novel colorimetric sensor strip for the detection of glyphosate in water. Sensors Actuators B Chem. 2015;206:357–63.

Article  Google Scholar 

Wimmer B, Pattky M, Zada LG, Meixner M, Haderlein SB, Zimmermann H-P, Huhn C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal Bioanal Chem. 2020;412:4967–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zouaoui F, Bourouina-Bacha S, Bourouina M, Abroa-Nemeir I, Ben Halima H, Gallardo-Gonzalez J, Hassani NA, Alcacer A, Bausells J, Jaffrezic-Renault N, Zine N, Errachid A. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sensors Actuators B Chem. 2020;309: 127753.

Article  CAS  Google Scholar 

Regiart M, Fernández-Baldo MA, Navarro P, Pereira SV, Raba J, Messina GA. Nanostructured electrode using CMK-8/CuNPs platform for herbicide detection in environmental samples. Microchem J. 2020;157:105014.

Article  CAS  Google Scholar 

Moraes FC, Mascaro LH, Machado SAS, Brett CMA. Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis. 2010;22:1586–91.

Article  CAS  Google Scholar 

Gholivand M-B, Akbari A, Norouzi L. Development of a novel hollow fiber- pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sensors Actuators B Chem. 2018;272:415–24.

Article  CAS  Google Scholar 

Fernandes JO, Bernardino CAR, Braz BF, Mahler CF, Santelli RE, Cincotto FH. (Bio)Sensing materials: Quantum dots. Encycl Sensor Biosens. 2023;2:389–400.

Article  Google Scholar 

Cincotto FH, Moraes FC, Machado SAS. Graphene nanosheets and quantum dots: A smart material for electrochemical applications. Eur J Chem A. 2014;20:4746–53.

Article  CAS  Google Scholar 

Setznagl S, Cesarino I. Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. Int J Environ Anal Chem. 2022;102:293–305.

Article  CAS  Google Scholar 

Wong A, Lima DG, Ferreira PA, Khan S, Silva RAB, Faria JLB, Sotomayor MPT. Voltammetric sensing of glyphosate in different samples using carbon paste electrode modified with biochar and copper(II) hexadecafluoro-29H,31 phtalocyanine complex. J Appl Electrochem. 2021;51:761–8.

Article  CAS  Google Scholar 

Cincotto FH, Carvalho DAS, Canevari TC, Toma HE, Fatibello-Filho O, Moraes FC. A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Adv. 2018;8:14040–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Talarico D, Arduini F, Constantino A, Del Carlo M, Compagnone D, Moscone D, Palleschi G. CB as successful screen-printed electrode modifier for phenolic compound detection. Electrochem commun. 2015;60:78–82.

Article  CAS  Google Scholar 

Sfragano PS, Laschi S, Palchetti I. Sustainable printed electrochemical platforms for greener analytics. Front Chem. 2020;8:644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayat A, Marty J. Disposable screen printed electrochemicals sensors: Tools for environmental monitoring. Sensors. 2014;14:10432–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khodabakhshi S, Fulvio PF, Andreoli E. Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon N Y. 2020;162:604–49.

Article  CAS  Google Scholar 

Ni Z, Wang X, Dong Y, Yang Y, Yin Y, Zhao L, Wang X. Aptasensor based on screen-printed carbon electrodes modified with CS/AuNPs for sensitive detection of okadaic acid in shellfish. J Anal Test. 2023;7:136–46.

Google Scholar 

Durai L, Badhulika S. One-Pot synthesis of rGO supported Nb2O5 nanospheres for ultra-selective sensing of bisphenol a and hydrazine in water samples. IEEE Sens J. 2021;21:4152–9.

Article  CAS  Google Scholar 

Athar T, Hashmi A, Al-Hajry A, Ansari ZA, Ansari SG. One-pot synthesis and characterization of Nb2O5 nanopowder. J Nanosci Nanotechnol. 2012;12:7922–6.

Article  CAS  PubMed  Google Scholar 

Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y. A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays. J Electroanal Chem. 2017;791:17–22.

Article  CAS  Google Scholar 

Uekawa N, Kudo T, Mori F, Wu YJ, Kakegawa K. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. J Colloid Interface Sci. 2003;264:378–84.

Article  CAS  PubMed  Google Scholar 

Santos JS, Pontes MS, Santiago EF, Fiorucci AR, Arruda GJ. An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. Sci Total Environ. 2020;749: 142385.

Article  CAS  PubMed  Google Scholar 

IUPAC. Limit of detection in analysis. IUPAC Compend Chem Terminol. Research Triangle Park, NC: International Union of Pure and Applied Chemistry (IUPAC); 2014.

Bochkova O, Khrizanforov M, Gubaidullin A, Gerasimova T, Nizameev I, Kholin K, Laskin A, Budnikova Y, Sinyashin O, Mustafina A. Synthetic tuning of coii-doped silica nanoarchitecture towards electrochemical sensing ability. Nanomaterials. 2020;10:1338.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mbokana JGY, Dedzo GK, Ngameni E. Grafting of organophilic silane in the interlayer space of acid-treated smectite: Application to the direct electrochemical detection of glyphosate. Appl Clay Sci. 2020;188: 105513.

Article  CAS  Google Scholar 

Xu J, Zhang Y, Wu K, Zhang L, Ge S, Yu J. A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Microchim Acta. 2017;184(7):1959–67.

Article  CAS  Google Scholar 

Aguirre MC, Urreta SE, Gomez CG. A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors Actuators B Chem. 2019;284:675–83.

Article  CAS  Google Scholar 

Vaghela C, Kulkarni M, Haram S, Aiyer R, Karve M. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int J Biol Macromol. 2018;108:32–40.

Comments (0)

No login
gif