Li C, Zhao H, Liu Z, McMahon C. Deer antler—a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol. 2014;56:111–22.
Li C. Histogenetic aspects of Deer antler development. Front Biosci (Elite Ed). 2013;5:479–89.
Simpson AM, Suttie JM, Kay RNB. The influence of nutrition and photoperiod on the growth of antlers of young red deer and sheep. Anim Reprod Sci. 1984;6:291–9.
Lincoln GA, Fletcher TJ. Induction of antler growth in a congenitally polled Scottish red deer stag. J Exp Zool. 1976;195:247–52.
Article CAS PubMed Google Scholar
Li C, Littlejohn RP, Corson ID, Suttie JM. Effects of testosterone on pedicle formation and its transformation to antler in castrated male, freemartin and normal female red deer (Cervus elaphus). Gen Comp Endocr. 2003;131:21–31.
Article CAS PubMed Google Scholar
Qin T, Zhang G, Zheng Y, Li S, Yuan Y, Li Q, Hu M, Si H, Wei G, Gao X, et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science. 2023;397:840–7.
Liu M, Han X, Liu H, Chen D, Li Y, Hu W. The effects of CRISPR-Cas9 knockout of the TGF-beta1 gene on antler cartilage cells in vitro. Cell Mol Biol Lett. 2019;24:1–12.
Article PubMed PubMed Central Google Scholar
Chen D, Li Y, Jiang R, Li Y, Feng J, Hu W. Effects and mechanism of lncRNA-27785.1 that regulates TGF-beta1 of Sika deer on antler cell proliferation. J Cell Physiol. 2021;236:5742–56.
Article CAS PubMed Google Scholar
Chen D, Yang M, Sun Z, Song M, Yao H, Long G, Hu W. Notch4 affects the proliferation and differentiation of deer antler chondrocytes through the Smad3/lncRNA27785.1 axis. Cell Signal. 2022;98:110429.
Article CAS PubMed Google Scholar
Zhang Y. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.
Article CAS PubMed Google Scholar
Boulton T, Yancopoulos G, Gregory J, Slaughter C, Moomaw C, Hsu J, Cobb M. An insulin stimulated protein-kinase similar to yeast kinases involved in cell cycle control. Science. 1990;249:64–7.
Article CAS PubMed Google Scholar
Stanton L-A, Underhill TM, Beier F. MAP kinases in chondrocyte differentiation. Dev Biol. 2003;263:165–75.
Article CAS PubMed Google Scholar
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Bio. 2020;21:607–32.
Krens SG, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–90.
Article CAS PubMed Google Scholar
Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene by fibroblast fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2000;97:1113–8.
Article CAS PubMed PubMed Central Google Scholar
Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae HS, Park BC. Proteome analysis of red deer antlers. Proteomics. 2004;4:3642–53.
Article CAS PubMed Google Scholar
Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA. 2018;4:FSO314.
Article CAS PubMed PubMed Central Google Scholar
QiangXu X, Chen Y, Tan B, Wang D, Yuan Z, Wang F. Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression. J Cell Biochem. 2020;121:4819–26.
Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P, Fan X. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin alpha5 expression. Cell Death Differ. 2021;28:283–302.
Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell. 2019;74:508–20.
Article CAS PubMed PubMed Central Google Scholar
Chekulaeva M, Rajewsky N. Roles of long noncoding RNAs and circular RNAs in translation. CSH Perspect Biol. 2019;11: a032680.
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.
Article CAS PubMed Google Scholar
Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Canc Res. 2020;39:1–15.
Hu Z, Zhou S, Li J, Zhou Z, Wang P, Xin H, Mao L, Luo C, Yu S, Huang X, et al. Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. 2020;72:906–22.
Article CAS PubMed Google Scholar
Lu S, Wu X, Xin S, Zhang J, Lin H, Miao Y, Li Y. Knockdown of circ_0001679 alleviates lipopolysaccharide-induced MLE-12 lung cell injury by regulating the miR-338-3p/ mitogen-activated protein kinase 1 axis. Bioengineered. 2022;13:5803–17.
Article CAS PubMed PubMed Central Google Scholar
Han J, Thurnherr T, Chung AYF, Goh BKP, Chow PKH, Chan CY, Cheow PC, Lee SY, Lim TKH, Chong SS, et al. Clinicopathological-associated regulatory network of deregulated circRNAs in hepatocellular carcinoma. Cancers. 2021;13:2772.
Article CAS PubMed PubMed Central Google Scholar
Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36:177–88.
Article CAS PubMed Google Scholar
Roundtree IA, Luo G, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6: e31311.
Article PubMed PubMed Central Google Scholar
Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica A, Morlando M, Bozzoni I. Modulation of circRNA metabolism by m(6)A modification. Cell Rep. 2020;31: 107641.
Williams GD, Gokhale NS, Horner SM. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu Rev Virol. 2019;6:235–53.
Article CAS PubMed PubMed Central Google Scholar
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Bio. 2019;20:608–24.
Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.
Article CAS PubMed PubMed Central Google Scholar
Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T, Igarashi K. S-adenosylmethionine synthesis is regulated by selective N(6)-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep. 2017;21:3354–63.
Article CAS PubMed Google Scholar
Xiao W, Adhikari S, Dahal U, Chen Y, Hao Y, Sun B, Sun H, Li A, Ping X, Lai W, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61:507–19.
Article CAS PubMed Google Scholar
Chen R, Chen X, Xia L, Zhang J, Pan Z, Ma X, Han K, Chen J, Judde J, Deas O, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.
Article PubMed PubMed Central Google Scholar
Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009;57:318–23.
Article CAS PubMed Google Scholar
de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 2001;13:721–7.
Nepal M, Li L,
Comments (0)