METTL3/YTHDC1-medicated m6A modification of circRNA3634 regulates the proliferation and differentiation of antler chondrocytes by miR-124486-5-MAPK1 axis

Li C, Zhao H, Liu Z, McMahon C. Deer antler—a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol. 2014;56:111–22.

Article  PubMed  Google Scholar 

Li C. Histogenetic aspects of Deer antler development. Front Biosci (Elite Ed). 2013;5:479–89.

Article  PubMed  Google Scholar 

Simpson AM, Suttie JM, Kay RNB. The influence of nutrition and photoperiod on the growth of antlers of young red deer and sheep. Anim Reprod Sci. 1984;6:291–9.

Article  CAS  Google Scholar 

Lincoln GA, Fletcher TJ. Induction of antler growth in a congenitally polled Scottish red deer stag. J Exp Zool. 1976;195:247–52.

Article  CAS  PubMed  Google Scholar 

Li C, Littlejohn RP, Corson ID, Suttie JM. Effects of testosterone on pedicle formation and its transformation to antler in castrated male, freemartin and normal female red deer (Cervus elaphus). Gen Comp Endocr. 2003;131:21–31.

Article  CAS  PubMed  Google Scholar 

Qin T, Zhang G, Zheng Y, Li S, Yuan Y, Li Q, Hu M, Si H, Wei G, Gao X, et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science. 2023;397:840–7.

Article  Google Scholar 

Liu M, Han X, Liu H, Chen D, Li Y, Hu W. The effects of CRISPR-Cas9 knockout of the TGF-beta1 gene on antler cartilage cells in vitro. Cell Mol Biol Lett. 2019;24:1–12.

Article  PubMed  PubMed Central  Google Scholar 

Chen D, Li Y, Jiang R, Li Y, Feng J, Hu W. Effects and mechanism of lncRNA-27785.1 that regulates TGF-beta1 of Sika deer on antler cell proliferation. J Cell Physiol. 2021;236:5742–56.

Article  CAS  PubMed  Google Scholar 

Chen D, Yang M, Sun Z, Song M, Yao H, Long G, Hu W. Notch4 affects the proliferation and differentiation of deer antler chondrocytes through the Smad3/lncRNA27785.1 axis. Cell Signal. 2022;98:110429.

Article  CAS  PubMed  Google Scholar 

Zhang Y. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.

Article  CAS  PubMed  Google Scholar 

Boulton T, Yancopoulos G, Gregory J, Slaughter C, Moomaw C, Hsu J, Cobb M. An insulin stimulated protein-kinase similar to yeast kinases involved in cell cycle control. Science. 1990;249:64–7.

Article  CAS  PubMed  Google Scholar 

Stanton L-A, Underhill TM, Beier F. MAP kinases in chondrocyte differentiation. Dev Biol. 2003;263:165–75.

Article  CAS  PubMed  Google Scholar 

Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Bio. 2020;21:607–32.

Article  CAS  Google Scholar 

Krens SG, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–90.

Article  CAS  PubMed  Google Scholar 

Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene by fibroblast fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2000;97:1113–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae HS, Park BC. Proteome analysis of red deer antlers. Proteomics. 2004;4:3642–53.

Article  CAS  PubMed  Google Scholar 

Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA. 2018;4:FSO314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

QiangXu X, Chen Y, Tan B, Wang D, Yuan Z, Wang F. Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression. J Cell Biochem. 2020;121:4819–26.

Article  Google Scholar 

Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P, Fan X. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin alpha5 expression. Cell Death Differ. 2021;28:283–302.

Article  PubMed  Google Scholar 

Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell. 2019;74:508–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chekulaeva M, Rajewsky N. Roles of long noncoding RNAs and circular RNAs in translation. CSH Perspect Biol. 2019;11: a032680.

CAS  Google Scholar 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

Article  CAS  PubMed  Google Scholar 

Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Canc Res. 2020;39:1–15.

Article  CAS  Google Scholar 

Hu Z, Zhou S, Li J, Zhou Z, Wang P, Xin H, Mao L, Luo C, Yu S, Huang X, et al. Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. 2020;72:906–22.

Article  CAS  PubMed  Google Scholar 

Lu S, Wu X, Xin S, Zhang J, Lin H, Miao Y, Li Y. Knockdown of circ_0001679 alleviates lipopolysaccharide-induced MLE-12 lung cell injury by regulating the miR-338-3p/ mitogen-activated protein kinase 1 axis. Bioengineered. 2022;13:5803–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han J, Thurnherr T, Chung AYF, Goh BKP, Chow PKH, Chan CY, Cheow PC, Lee SY, Lim TKH, Chong SS, et al. Clinicopathological-associated regulatory network of deregulated circRNAs in hepatocellular carcinoma. Cancers. 2021;13:2772.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36:177–88.

Article  CAS  PubMed  Google Scholar 

Roundtree IA, Luo G, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6: e31311.

Article  PubMed  PubMed Central  Google Scholar 

Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica A, Morlando M, Bozzoni I. Modulation of circRNA metabolism by m(6)A modification. Cell Rep. 2020;31: 107641.

Article  PubMed  Google Scholar 

Williams GD, Gokhale NS, Horner SM. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu Rev Virol. 2019;6:235–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Bio. 2019;20:608–24.

Article  CAS  Google Scholar 

Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T, Igarashi K. S-adenosylmethionine synthesis is regulated by selective N(6)-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep. 2017;21:3354–63.

Article  CAS  PubMed  Google Scholar 

Xiao W, Adhikari S, Dahal U, Chen Y, Hao Y, Sun B, Sun H, Li A, Ping X, Lai W, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61:507–19.

Article  CAS  PubMed  Google Scholar 

Chen R, Chen X, Xia L, Zhang J, Pan Z, Ma X, Han K, Chen J, Judde J, Deas O, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.

Article  PubMed  PubMed Central  Google Scholar 

Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009;57:318–23.

Article  CAS  PubMed  Google Scholar 

de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 2001;13:721–7.

Article  PubMed  Google Scholar 

Nepal M, Li L,

Comments (0)

No login
gif