Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci. 2007;85(13 Suppl):E45–62. https://doi.org/10.2527/jas.2006-508.
Article CAS PubMed Google Scholar
Feng P. Shiga Toxin-Producing Escherichia coli (STEC) in Fresh Produce-A Food Safety Dilemma. Microbiol Spectr. 2014;2(4):EHEC–0010. https://doi.org/10.1128/microbiolspec.EHEC-0010-2013.
Article CAS PubMed Google Scholar
Panel EFSABIOHAZ, Koutsoumanis K, Allende A, Alvarez-Ordónez A, Bover-Cid S, Chemaly M et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. Microbiol Spectr.2(3): EHEC-0001-2013. https://doi.org/10.2903/j.efsa.2020.5967.
Beutin L, Fach P. Detection of Shiga toxin-producing Escherichia coli from nonhuman sources and strain typing. Enterohemorrhagic Escherichia coli and other Shiga Toxin-Producing E coli. Microbiol Spectr. 2014;2(3):EHEC–0001. https://doi.org/10.1128/microbiolspec.EHEC-0001-2013.
Heiman KE, Mody RK, Johnson SD, Griffin PM, Gould LH. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg Infect Dis. 2015;21(8):1293–301. https://doi.org/10.3201/eid2108.141364.
Article CAS PubMed PubMed Central Google Scholar
Gill A, Dussault F, McMahon T, Petronella N, Wang X, Cebelinski E, et al. Characterization of atypical Shiga toxin gene sequences and description of Stx2j, a new subtype. J Clin Microbiol. 2022;60(3):e02229–21. https://doi.org/10.1128/jcm.02229-21.
Article PubMed PubMed Central Google Scholar
Lindsey RL, Prasad A, Feldgarden M, Gonzalez-Escalona N, Kapsak C, Klimke W, et al. Identification and characterization of ten Escherichia coli strains encoding Novel Shiga Toxin 2 subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms. 2023;11(10):2561. https://doi.org/10.3390/microorganisms11102561.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga toxin-producing Escherichia coli and their contribution to pathogenicity. Pathogens. 2021;10(4):404. https://doi.org/10.3390/pathogens10040404.
Article PubMed PubMed Central Google Scholar
Unkmeir A, Schmidt H. Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun. 2000;68(9):4856–64. https://doi.org/10.1128/iai.68.9.4856-4864.2000.
Article CAS PubMed PubMed Central Google Scholar
Yokoyama K, Makino K, Kubota Y, Watanabe M, Kimura S, Yutsudo CH, et al. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157: H7 strain derived from the Sakai outbreak. Gene. 2000;258(1–2):127–39. https://doi.org/10.1016/s0378-1119(00)00416-9.
Article CAS PubMed Google Scholar
Neely MN, Friedman DI. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol. 1998;28(6):1255–67. https://doi.org/10.1046/j.1365-2958.1998.00890.x.
Article CAS PubMed Google Scholar
Kruger A, Lucchesi PMA. Shiga toxins and stx phages: highly diverse entities. Microbiology. 2015;161:451–62. https://doi.org/10.1099/mic.0.000003.
Article CAS PubMed Google Scholar
Kohler B, Karch H, Schmidt H. Antibacterials that are used as growth promoters in animal husbandry can affect the release of shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. Microbiology. 2000;146:1085–90. https://doi.org/10.1099/00221287-146-5-1085.
Article CAS PubMed Google Scholar
Little JW, Mount DW. The SOS regulatory system of Escherichia coli. Cell. 1982;29(1):11–22. https://doi.org/10.1016/0092-8674(82)90085-x.
Article CAS PubMed Google Scholar
Aksenov SV. Induction of the SOS response in ultraviolet-irradiated Escherichia coli analyzed by dynamics of LexA, RecA and SulA proteins. J Biol Phys. 1999;25:263–77. https://doi.org/10.1023/A:1005163310168.
Article CAS PubMed PubMed Central Google Scholar
Allison HE. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol. 2007;2(2):165–74. https://doi.org/10.2217/17460913.2.2.165.
Article CAS PubMed Google Scholar
Smith DL, James CE, Sergeant MJ, Yaxian Y, Saunders JR, McCarthy AJ, Allison HE. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria. J Bacteriol. 2007;189(20):7223–33. https://doi.org/10.1128/jb.00824-07.
Article CAS PubMed PubMed Central Google Scholar
Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T. Induction of prophages of enterohemorrhagic Escherichia coli O157: H7 with norfloxacin. J Bacteriol. 1999;181(7):2257–60. https://doi.org/10.1128/JB.181.7.2257-2260.1999.
Article CAS PubMed PubMed Central Google Scholar
Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis. 2000;6(5):458–65. https://doi.org/10.3201/eid0605.000503.
Article CAS PubMed PubMed Central Google Scholar
Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic–uremic syndrome after antibiotic treatment of Escherichia coli O157: H7 Infections. New Engl J Med. 2000;342(26):1930–6. https://doi.org/10.1056/NEJM200006293422601.
Article CAS PubMed Google Scholar
Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis. 2000;181(2):664–70. https://doi.org/10.1086/315239.
Article CAS PubMed Google Scholar
Grif K, Dierich M, Karch H, Allerberger F. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1998;17:761–6. https://doi.org/10.1007/s100960050181.
Article CAS PubMed Google Scholar
Castanon J. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007;86(11):2466–71. https://doi.org/10.3382/ps.2007-00249.
Article CAS PubMed Google Scholar
Henton MM, Eagar HA, Swan GE, van Vuuren M, Part VI. Antibiotic management and resistance in livestock production. S Afr Med J. 2011;101(8):583–6.
Murdoch AI, McCauley RD, Hampson DJ. Review of the efficacy and safety of poly (2-propenal, 2-propenoic acid): a Novel Antimicrobial Polymer. Thai J of Vet Med. 2007;37(4):9–17. https://doi.org/10.56808/2985-1130.2107.
Lovmar M, Vimberg V, Lukk E, Nilsson K, Tenson T, Ehrenberg M. Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin. Biochimie. 2009;91(8):989–95. https://doi.org/10.1016/j.biochi.2009.05.002.
Article CAS PubMed Google Scholar
Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16(2):175–. https://doi.org/10.1128/cmr.16.2.175-188.2003.
Article CAS PubMed PubMed Central Google Scholar
Li Q, Seiple IB. A concise route to virginiamycin M2. Tetrahedron. 2019;75(24):3309–18. https://doi.org/10.1016/j.tet.2019.04.060.
Article CAS PubMed PubMed Central Google Scholar
Volke F, Waschipky R, Pampel A, Donnerstag A, Lantzsch G, Pfeiffer H, et al. Characterisation of antibiotic moenomycin a interaction with phospholipid model membranes. Chem Phys Lipids. 1997;85(2):115–23. https://doi.org/10.1016/s0009-3084(96)02649-7.
Article CAS PubMed Google Scholar
O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic Colitis or infantile diarrhea. Science. 1984;226(4675):694–6. https://doi.org/10.1126/science.6387911.
Karama M, Gyles CL. Characterization of verotoxin-encoding phages from Escherichia coli O103: H2 strains of bovine and human origins. Appl Environ Microbiol. 2008;74(16):5153–8. https://doi.org/10.1128/aem.00723-08.
Article CAS PubMed PubMed Central Google Scholar
Allison HE, Sergeant MJ, James CE, Saunders JR, Smith DL, Sharp RJ, et al. Immunity profiles of wild-type and recombinant Shiga-Like toxin-encoding bacteriophages and characterization of novel double lysogens. Infect Immun. 2003;71(6):3409–18. https://doi.org/10.1128/iai.71.6.3409-3418.2003.
Comments (0)