Donkor ES. Stroke in the century: a snapshot of the burden, epidemiology, and quality of life. Stroke research and treatment 2018 (2018).
Maruyama H, Tanahashi N. Diagnosis and treatment of cerebral infarction. Nihon rinsho Japanese J Clin Med. 2010;68(5):920–5.
Ave A, Fauzan H, Adhitya SR, Zakaria H. Early detection of cardiovascular disease with photoplethysmogram (PPG) sensor. In: 2015 international conference on electrical engineering and informatics (ICEEI), 2015;pp. 676-681. IEEE.
Gupta S, Singh A, Sharma A, Tripathy RK. DSVRI: a PPG-based novel feature for early diagnosis of type-II diabetes mellitus. IEEE Sens Lett. 2022;6(9):1–4.
Gupta S, Singh A, Sharma A. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed Eng Lett. 2022; 1-9.
Gupta S, Singh A, Sharma A, Tripathy RK. Exploiting tunable Q-factor wavelet transform domain sparsity to denoise wrist PPG signals. In: IEEE transactions on instrumentation and measurement, 2023;72, pp. 1-12. 4008012, https://doi.org/10.1109/TIM.2023.3287248.
Gupta S, Singh A, Sharma A. Dynamic large artery stiffness index for cuffless blood pressure estimation. In: IEEE sensors letters, 2022;6(3):1-4, 2022, 7000704. https://doi.org/10.1109/LSENS.2022.3157060.
Yu J, Park S, Kwon S-H, Cho K-H, Lee H. AI-based stroke disease prediction system using ECG and PPG bio-signals. IEEE Access. 2022;10:43623–38. https://doi.org/10.1109/ACCESS.2022.3169284.
Fallet S, Lemay M, Renevey P, Leupi C, Pruvot E, Vesin JM. Can one detect atrial fibrillation using a wrist-type photoplethysmographic device. Med Biol Eng Compu. 2019;57(2):477–87.
Eerikainen LM, Bonomi AG, Schipper F, Dekker LRC, de Morree HM, Vullings R, Aarts RM. Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data. IEEE J Biomed Health Informat. 2020;24(6):1610–8.
Kulkarni TR, Dushyanth ND. Early and noninvasive screening of common cardio vascular related diseases such as diabetes and cerebral infarction using photoplethysmograph signals. Results Opt. 2021;3:100062.
Gupta S, Singh A, Sharma A, Tripathy RK. Higher order derivative-based integrated model for cuff-less blood pressure estimation and stratification using PPG signals. In: IEEE sensors journal, 2022;22(22):22030-22039. https://doi.org/10.1109/JSEN.2022.3211993.
Suboh MZ, Jaafar R, Nayan NA, Harun NH, Mohamad MSF. Analysis on four derivative waveforms of photoplethysmogram (PPG) for fiducial points detection. Front Public Health. 2022.
Liang Y, Liu G, Chen Z, Elgendi M. PPG-BP Database. figshare. (2018): Dataset. https://doi.org/10.6084/m9.figshare.5459299.v3
Singh BN, et al. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 2006;16(3):275–87.
Chatterjee A, Roy UK. PPG based heart rate algorithm improvement with butterworth IIR filter and Savitzky-Golay FIR filter. In: 2018 2nd international conference on electronics, materials engineering and nano-technology (IEMENTech), 2018; pp. 1-6. https://doi.org/10.1109/IEMENTECH.2018.8465225.
Zhang A, Yang B, Huang L. Feature extraction of EEG signals using power spectral entropy. In: 2008 international conference on BioMedical engineering and informatics, Sanya, China, 2008; pp. 435-439. https://doi.org/10.1109/BMEI.2008.254.
Yang J, Choudhary GI, Rahardja S, Franti P. Classification of interbeat interval time-series using attention entropy. In: IEEE transactions on affective computing. https://doi.org/10.1109/TAFFC.2020.3031004.
Rostaghi M, Azami H. Dispersion entropy: a measure for time-series analysis. IEEE Signal Process Lett. 2016;23(5):610–4.
Cuesta-Frau D. Slope entropy: a new time series complexity estimator based on both symbolic patterns and amplitude information. Entropy. 2019;21(12):1167.
Article MathSciNet Google Scholar
McKight PE, Najab J. Kruskal-wallis test. The corsini encyclopedia of psychology 2010; p. 1.
Comments (0)