Sartori A, Abdoli M, Freedman MS. Can we predict benign multiple sclerosis? Results of a 20-year long-term follow-up study. J Neurol. 2017;264:1068–75.
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;3:278–86.
Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancer Neurol. 2012;11:157–69.
Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol. 2018;31:233–43.
Article CAS PubMed Google Scholar
Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, Berger F, Schmidt E, Righetti PG, Guerrier L, Boschetti E, Burlet-Schiltz O, Monsarrat B. Gonzalez de Peredo A. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics. 2010;9:1006–21.
Article CAS PubMed PubMed Central Google Scholar
Batruch I, Lim B, Soosaipillai A, Brinc D, Fiala C, Diamandis EP. Mass Spectrometry-Based assay for Targeting fifty-two proteins of Brain Origin in Cerebrospinal Fluid. J Proteome Res. 2020;19:3060–71.
Article CAS PubMed Google Scholar
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteom. 2016;13:11.
Begcevic I, Brinc D, Dukic L, Simundic AM, Zavoreo I, Basic Kes V, Martinez-Morillo E, Batruch I, Drabovich AP, Diamandis EP. Targeted Mass Spectrometry-Based assays for relative quantification of 30 brain-related proteins and their clinical applications. J Proteome Res. 2018;17:2282–92.
Article CAS PubMed Google Scholar
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.
Article PubMed PubMed Central Google Scholar
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.
Article CAS PubMed Google Scholar
Swulius MT, Waxham MN. Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci. 2008;65:2637–57.
Article CAS PubMed PubMed Central Google Scholar
Liu T, Donahue KC, Hu J, Kurnellas MP, Grant JE, Li H, Elkabes S. Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J Proteome Res. 2007;6:2565–75.
Article CAS PubMed PubMed Central Google Scholar
Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV, Young EA, Fox RJ, Staugaitis SM, Trapp BD. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol. 2011;69:445–54.
Article CAS PubMed PubMed Central Google Scholar
Clarelli F, Liberatore G, Sorosina M, Osiceanu AM, Esposito F, Mascia E, Santoro S, Pavan G, Colombo B, Moiola L, Martinelli V, Comi G, Martinelli-Boneschi F. Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis. Pharmacogenomics J. 2017;17:84–91.
Article CAS PubMed Google Scholar
Di Filippo M, Tozzi A, Arcangeli S, de Iure A, Durante V, Di Gregorio M, Gardoni F, Calabresi P. Interferon-β1a modulates glutamate neurotransmission in the CNS through CaMKII and GluN2A-containing NMDA receptors. Neuropharmacology. 2016;100:98–105.
Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, Hu X, Luo Z. CaMKII-Mediated CREB phosphorylation is involved in Ca2+-Induced BDNF mRNA transcription and Neurite Outgrowth promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784.
Article PubMed PubMed Central Google Scholar
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2 + influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998;20:709–26.
Article CAS PubMed Google Scholar
Gupta N, Jadhav S, Tan KL, Saw G, Mallilankaraman KB, Dheen ST. Mir-142-3p regulates BDNF expression in activated Rodent Microglia through its target CAMK2A. Front Cell Neurosci. 2020;14:132.
Article CAS PubMed PubMed Central Google Scholar
Sarchielli P, Greco L, Stipa A, Floridi A, Gallai V. Brain-derived neurotrophic factor in patients with multiple sclerosis. J Neuroimmunol. 2002;132:180–8.
Article CAS PubMed Google Scholar
Nociti V. What is the role of brain derived neurotrophic factor in multiple sclerosis neuroinflammation? Neuroimmunol Neuroinflammation. 2020;2020:291–9.
Makar TK, Bever CT, Singh IS, Royal W, Sahu SN, Sura TP, Sultana S, Sura KT, Patel N, Dhib-Jalbut S, Trisler D. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol. 2009;210:40–51.
Article CAS PubMed Google Scholar
De Santi L, Annunziata P, Sessa E, Bramanti P. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neurol Sci. 2009;287:17–26.
Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain. 2002;125:75–85.
Naegelin Y, Saeuberli K, Schaedelin S, Dingsdale H, Magon S, Baranzini S, Amann M, Parmar K, Tsagkas C, Calabrese P, Penner IK, Kappos L, Barde YA. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann Clin Transl Neurol. 2020;7:2251–61.
Article CAS PubMed PubMed Central Google Scholar
Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2011;18:186–202.
KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M. Transcriptional regulation of brain-derived neurotrophic factor (BDNF) by methyl CpG binding protein 2 (MeCP2): a Novel mechanism for Re-Myelination and/or myelin repair involved in the treatment of multiple sclerosis (MS). Mol Neurobiol. 2016;53:1092–107.
Article CAS PubMed Google Scholar
Kalinowska-Łyszczarz A, Pawlak MA, Wyciszkiewicz A, Osztynowicz K, Kozubski W, Michalak S. Immune-cell BDNF expression in treatment-naïve relapsing-remitting multiple sclerosis patients and following one year of immunomodulation therapy. Neurol Neurochir Pol. 2018;52:483–9.
Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, Mejia-delCastillo GJ, Carrera-Pineda R, Cuevas-Garcia CF. Garcia-delaTorre P. BDNF and tau as biomarkers of severity in multiple sclerosis. Biomark Med. 2018;12:717–26.
Article CAS PubMed Google Scholar
Blanco Y, Moral EA, Costa M, Gómez-Choco M, Torres-Peraza JF, Alonso-Magdalena L, Alberch J, Jaraquemada D, Arbizu T, Graus F, Saiz A. Effect of glatiramer acetate (Copaxone®) on the immunophenotypic and cytokine profile and BDNF production in multiple sclerosis: a longitudinal study. Neurosci Lett. 2006;406:270–5.
Article CAS PubMed Google Scholar
Ziemssen T, Kümpfel T, Klinkert WE, Neuhaus O, Hohlfeld R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain. 2002;125:2381–91.
Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2016;52:1–8.
Talebi F, Ghorbani S, Chan WF, Boghozian R, Masoumi F, Ghasemi S, Vojgani M, Power C, Noorbakhsh F. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation. 2017;14:1–14.
Mandolesi G, De Vito F, Musella A, Gentile A, Bullitta S, Fresegna D, Sepman H, Di Sanza C, Haji N, Mori F, Buttari F, Perlas E, Ciotti MT, Hornstein E, Bozzoni I, Presutti C, Centonze D. Mir-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. J Neurosci. 2017;37:546–61.
Article CAS PubMed PubMed Central Google Scholar
Muñoz-San Martín M, Torras S, Robles-Cedeño R, Buxó M, Gomez I, Matute-Blanch C, Comabella M, Villar LM, Perkal H, Quintana E. Ramió-Torrentà L. Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics. 2020;12:2065–76.
Gerrard B, Singh V, Babenko O, Gauthier I, Wee Yong V, Kovalchuk I, Luczak A, Metz GAS. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Neuroscience. 2017;359:299–307.
Comments (0)