Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021(1), Article 3663315. https://doi.org/10.1155/2021/3663315
Article PubMed PubMed Central Google Scholar
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Disease, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079
Article PubMed PubMed Central CAS Google Scholar
Baiou, A., Elbuzidi, A., Bakdach, D., Zaqout, A., Alarbi, K., Bintaher, A., Ali, M., Elarabi, A., Ali, G., Daghfal, J., Almaslamani, M., Ibrahim, A., Alkhal, A., & Omrani, A. (2021). Clinical characteristics and risk factors for the isolation of multi-drug-resistant Gram-negative bacteria from critically ill patients with COVID-19. Journal of Hospital Infection, 110, 165–171. https://doi.org/10.1016/j.jhin.2021.01.027
Article PubMed CAS Google Scholar
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
Article PubMed PubMed Central CAS Google Scholar
Parmanik, A., Das, S., Kar, B., Bose, A., Dwivedi, G. R., & Pandey, M. M. (2022). Current treatment strategies against multidrug-resistant bacteria: A review. Current Microbiology, 79(12), 388. https://doi.org/10.1007/s00284-022-03061-7
Article PubMed PubMed Central CAS Google Scholar
Ng, X. Y., Fong, K. W., Kiew, L. V., Chung, P. Y., Liew, Y. K., Delsuc, N., Zulkefeli, M., & Low, M. L. (2023). Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. Journal of Inorganic Biochemistry, 250, Article 112425. https://doi.org/10.1016/j.jinorgbio.2023.112425
Article PubMed CAS Google Scholar
Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380–387. https://doi.org/10.1038/nrc1071
Article PubMed CAS Google Scholar
Li, J., & Chen, T. (2020). Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coordination Chemistry Reviews, 418, Article 213355. https://doi.org/10.1016/j.ccr.2020.213355
Jain, A., Garrett, N. T., & Malone, Z. P. (2022). Ruthenium-based photoactive metalloantibiotics. Photochemistry and Photobiology, 98(1), 6–16. https://doi.org/10.1111/php.13435
Article PubMed CAS Google Scholar
Pierce, S., Jennings, M. P., Juliano, S. A., & Angeles-Boza, A. M. (2020). Peptide–ruthenium conjugate as an efficient photosensitizer for the inactivation of multidrug-resistant bacteria. Inorganic Chemistry, 59(20), 14866–14870. https://doi.org/10.1021/acs.inorgchem.0c02491
Article PubMed CAS Google Scholar
Giacomazzo, G. E., Conti, L., Fagorzi, C., Pagliai, M., Andreini, C., Guerri, A., Perito, B., Mengoni, A., Valtancoli, B., & Giorgi, C. (2023). Ruthenium(II) polypyridyl complexes and metronidazole derivatives: A powerful combination in the design of photoresponsive antibacterial agents effective under hypoxic conditions. Inorganic Chemistry, 62(20), 7716–7727. https://doi.org/10.1021/acs.inorgchem.3c00214
Article PubMed PubMed Central CAS Google Scholar
Karges, J., Heinemann, F., Jakubaszek, M., Maschietto, F., Subecz, C., Dotou, M., Vinck, R., Blacque, O., Tharaud, M., Goud, B., Zahı́Nos, E. V., Spingler, B., Ciofini, I., & Gasser, G. (2020). Rationally designed long-wavelength absorbing RU(II) polypyridyl complexes as photosensitizers for photodynamic therapy. Journal of the American Chemical Society, 142(14), 6578–6587. https://doi.org/10.1021/jacs.9b13620
Article PubMed CAS Google Scholar
Matshwele, J. T., Odisitse, S., Mapolelo, D., Leteane, M., Julius, L. G., Nkwe, D. O., & Nareetsile, F. (2021). Antibacterial activity of 2-picolyl-polypyridyl-based Ruthenium (II/III) complexes on non-drug-resistant and drug-resistant bacteria. Bioinorganic Chemistry and Applications, 2021, 1–11. https://doi.org/10.1155/2021/5563209
de Sousa, A. P., Gondim, A. C. S., Sousa, E. H. S., de Vasconcelos, M. A., Teixeira, E. H., Bezerra, B. P., Ayala, A. P., Martins, P. H. R., de França Lopes, L. G., & Holanda, A. K. M. (2020). An unusual bidentate methionine ruthenium(II) complex: Photo uncaging and antimicrobial activity. Journal of Biological Inorganic Chemistry, 25(3), 419–428. https://doi.org/10.1007/s00775-020-01772-5
Article PubMed CAS Google Scholar
Li, S., Zhao, J., Wang, X., Xu, G., Gou, S., & Zhao, Q. (2020). Design of a tris-heteroleptic Ru(II) complex with red-light excitation and remarkably improved photobiological activity. Inorganic Chemistry, 59(15), 11193–11204. https://doi.org/10.1021/acs.inorgchem.0c01860
Article PubMed CAS Google Scholar
Feng, Y., Sun, W., Wang, X., & Zhou, Q. (2019). Selective photoinactivation of methicillin-resistant Staphylococcus aureus by highly positively charged Ru(II) complexes. Chemistry – A European Journal, 25(61), 13879–13884. https://doi.org/10.1002/chem.201903923
Article PubMed CAS Google Scholar
Le Gall, T., Lemercier, G., Chevreux, S., Tücking, K., Ravel, J., Thétiot, F., Jonas, U., Schönherr, H., & Montier, T. (2018). Ruthenium(II) polypyridyl complexes as photosensitizers for antibacterial photodynamic therapy: A structure-activity study on clinical bacterial strains. ChemMedChem, 13(20), 2229–2239. https://doi.org/10.1002/cmdc.201800392
Article PubMed CAS Google Scholar
Rice, D. R., Clear, K. J., & Smith, B. D. (2016). Imaging and therapeutic applications of zinc (ii)-dipicolylamine molecular probes for anionic biomembranes. Chemical Communications, 52(57), 8787–8801. https://doi.org/10.1039/c6cc03669d
Article PubMed CAS Google Scholar
Choi, K. Y., Silvestre, O. F., Huang, X., Hida, N., Liu, G., Ho, D. N., Lee, S., Lee, S. W., Hong, J. I., & Chen, X. (2014). A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nature Protocols, 9(8), 1900–1915. https://doi.org/10.1038/nprot.2014.128
Article PubMed PubMed Central CAS Google Scholar
Jiang, H., O’neil, E. J., DiVittorio, K. M., & Smith, B. D. (2005). Anion-mediated phase transfer of zinc (II)-coordinated tyrosine derivatives. Organic Letters, 7(14), 3013–3016. https://doi.org/10.1021/ol0510421
Article PubMed CAS Google Scholar
Low, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J., Crouse, K. A., Policar, C., & Delsuc, N. (2014). Conjugation of a new series of dithiocarbazate Schiff base copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconjugate Chemistry, 25(12), 2269–2284. https://doi.org/10.1021/bc5004907
Article PubMed CAS Google Scholar
Grace, J. L., Huang, J. X., Cheah, S., Truong, N. P., Cooper, M. A., Li, J., Davis, T. P., Quinn, J. F., Velkov, T., & Whittaker, M. R. (2016). Antibacterial low molecular weight cationic polymers: Dissecting the contribution of hydrophobicity, chain length and charge to activity. RSC Advances, 6(19), 15469–15477. https://doi.org/10.1039/c5ra24361k
Article PubMed CAS Google Scholar
Clinical and Laboratory Standards Institute. (2020). M100 30th edition – Performance standards for antimicrobial susceptibility testing.
Daly, S. M., Sturge, C. R., & Greenberg, D. E. (2017). Inhibition of bacterial growth by peptide-conjugated morpholino oligomers. In H. Moulton & J. Moulton (Eds.), Morpholino oligomers: Methods and protocols (pp. 115–122). Humana Press. https://doi.org/10.1007/978-1-4939-6817-6_10
Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods, 44(2), 121–129. https://doi.org/10.1016/S0167-7012(00)00241-4
Article PubMed CAS Google Scholar
Liew, H. S., Mai, C., Zulkefeli, M., Madheswaran, T., Kiew, L. V., Pua, L. J. W., Hii, L. W., Lim, W. M., & Low, M. L. (2022). Novel gemcitabine-RE(I) bisquinolinyl complex combinations and formulations with liquid crystalline nanoparticles for pancreatic cancer photodynamic therapy. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2022.903210
Comments (0)