Novel ruthenium(II) polypyridyl complexes conjugated with bis-dipicolylamine as antibacterial photosensitisers

Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021(1), Article 3663315. https://doi.org/10.1155/2021/3663315

Article  PubMed  PubMed Central  Google Scholar 

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Disease, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

Article  Google Scholar 

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baiou, A., Elbuzidi, A., Bakdach, D., Zaqout, A., Alarbi, K., Bintaher, A., Ali, M., Elarabi, A., Ali, G., Daghfal, J., Almaslamani, M., Ibrahim, A., Alkhal, A., & Omrani, A. (2021). Clinical characteristics and risk factors for the isolation of multi-drug-resistant Gram-negative bacteria from critically ill patients with COVID-19. Journal of Hospital Infection, 110, 165–171. https://doi.org/10.1016/j.jhin.2021.01.027

Article  PubMed  CAS  Google Scholar 

Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parmanik, A., Das, S., Kar, B., Bose, A., Dwivedi, G. R., & Pandey, M. M. (2022). Current treatment strategies against multidrug-resistant bacteria: A review. Current Microbiology, 79(12), 388. https://doi.org/10.1007/s00284-022-03061-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ng, X. Y., Fong, K. W., Kiew, L. V., Chung, P. Y., Liew, Y. K., Delsuc, N., Zulkefeli, M., & Low, M. L. (2023). Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. Journal of Inorganic Biochemistry, 250, Article 112425. https://doi.org/10.1016/j.jinorgbio.2023.112425

Article  PubMed  CAS  Google Scholar 

Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380–387. https://doi.org/10.1038/nrc1071

Article  PubMed  CAS  Google Scholar 

Li, J., & Chen, T. (2020). Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coordination Chemistry Reviews, 418, Article 213355. https://doi.org/10.1016/j.ccr.2020.213355

Article  CAS  Google Scholar 

Jain, A., Garrett, N. T., & Malone, Z. P. (2022). Ruthenium-based photoactive metalloantibiotics. Photochemistry and Photobiology, 98(1), 6–16. https://doi.org/10.1111/php.13435

Article  PubMed  CAS  Google Scholar 

Pierce, S., Jennings, M. P., Juliano, S. A., & Angeles-Boza, A. M. (2020). Peptide–ruthenium conjugate as an efficient photosensitizer for the inactivation of multidrug-resistant bacteria. Inorganic Chemistry, 59(20), 14866–14870. https://doi.org/10.1021/acs.inorgchem.0c02491

Article  PubMed  CAS  Google Scholar 

Giacomazzo, G. E., Conti, L., Fagorzi, C., Pagliai, M., Andreini, C., Guerri, A., Perito, B., Mengoni, A., Valtancoli, B., & Giorgi, C. (2023). Ruthenium(II) polypyridyl complexes and metronidazole derivatives: A powerful combination in the design of photoresponsive antibacterial agents effective under hypoxic conditions. Inorganic Chemistry, 62(20), 7716–7727. https://doi.org/10.1021/acs.inorgchem.3c00214

Article  PubMed  PubMed Central  CAS  Google Scholar 

Karges, J., Heinemann, F., Jakubaszek, M., Maschietto, F., Subecz, C., Dotou, M., Vinck, R., Blacque, O., Tharaud, M., Goud, B., Zahı́Nos, E. V., Spingler, B., Ciofini, I., & Gasser, G. (2020). Rationally designed long-wavelength absorbing RU(II) polypyridyl complexes as photosensitizers for photodynamic therapy. Journal of the American Chemical Society, 142(14), 6578–6587. https://doi.org/10.1021/jacs.9b13620

Article  PubMed  CAS  Google Scholar 

Matshwele, J. T., Odisitse, S., Mapolelo, D., Leteane, M., Julius, L. G., Nkwe, D. O., & Nareetsile, F. (2021). Antibacterial activity of 2-picolyl-polypyridyl-based Ruthenium (II/III) complexes on non-drug-resistant and drug-resistant bacteria. Bioinorganic Chemistry and Applications, 2021, 1–11. https://doi.org/10.1155/2021/5563209

Article  CAS  Google Scholar 

de Sousa, A. P., Gondim, A. C. S., Sousa, E. H. S., de Vasconcelos, M. A., Teixeira, E. H., Bezerra, B. P., Ayala, A. P., Martins, P. H. R., de França Lopes, L. G., & Holanda, A. K. M. (2020). An unusual bidentate methionine ruthenium(II) complex: Photo uncaging and antimicrobial activity. Journal of Biological Inorganic Chemistry, 25(3), 419–428. https://doi.org/10.1007/s00775-020-01772-5

Article  PubMed  CAS  Google Scholar 

Li, S., Zhao, J., Wang, X., Xu, G., Gou, S., & Zhao, Q. (2020). Design of a tris-heteroleptic Ru(II) complex with red-light excitation and remarkably improved photobiological activity. Inorganic Chemistry, 59(15), 11193–11204. https://doi.org/10.1021/acs.inorgchem.0c01860

Article  PubMed  CAS  Google Scholar 

Feng, Y., Sun, W., Wang, X., & Zhou, Q. (2019). Selective photoinactivation of methicillin-resistant Staphylococcus aureus by highly positively charged Ru(II) complexes. Chemistry – A European Journal, 25(61), 13879–13884. https://doi.org/10.1002/chem.201903923

Article  PubMed  CAS  Google Scholar 

Le Gall, T., Lemercier, G., Chevreux, S., Tücking, K., Ravel, J., Thétiot, F., Jonas, U., Schönherr, H., & Montier, T. (2018). Ruthenium(II) polypyridyl complexes as photosensitizers for antibacterial photodynamic therapy: A structure-activity study on clinical bacterial strains. ChemMedChem, 13(20), 2229–2239. https://doi.org/10.1002/cmdc.201800392

Article  PubMed  CAS  Google Scholar 

Rice, D. R., Clear, K. J., & Smith, B. D. (2016). Imaging and therapeutic applications of zinc (ii)-dipicolylamine molecular probes for anionic biomembranes. Chemical Communications, 52(57), 8787–8801. https://doi.org/10.1039/c6cc03669d

Article  PubMed  CAS  Google Scholar 

Choi, K. Y., Silvestre, O. F., Huang, X., Hida, N., Liu, G., Ho, D. N., Lee, S., Lee, S. W., Hong, J. I., & Chen, X. (2014). A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nature Protocols, 9(8), 1900–1915. https://doi.org/10.1038/nprot.2014.128

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jiang, H., O’neil, E. J., DiVittorio, K. M., & Smith, B. D. (2005). Anion-mediated phase transfer of zinc (II)-coordinated tyrosine derivatives. Organic Letters, 7(14), 3013–3016. https://doi.org/10.1021/ol0510421

Article  PubMed  CAS  Google Scholar 

Low, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J., Crouse, K. A., Policar, C., & Delsuc, N. (2014). Conjugation of a new series of dithiocarbazate Schiff base copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconjugate Chemistry, 25(12), 2269–2284. https://doi.org/10.1021/bc5004907

Article  PubMed  CAS  Google Scholar 

Grace, J. L., Huang, J. X., Cheah, S., Truong, N. P., Cooper, M. A., Li, J., Davis, T. P., Quinn, J. F., Velkov, T., & Whittaker, M. R. (2016). Antibacterial low molecular weight cationic polymers: Dissecting the contribution of hydrophobicity, chain length and charge to activity. RSC Advances, 6(19), 15469–15477. https://doi.org/10.1039/c5ra24361k

Article  PubMed  CAS  Google Scholar 

Clinical and Laboratory Standards Institute. (2020). M100 30th edition – Performance standards for antimicrobial susceptibility testing.

Daly, S. M., Sturge, C. R., & Greenberg, D. E. (2017). Inhibition of bacterial growth by peptide-conjugated morpholino oligomers. In H. Moulton & J. Moulton (Eds.), Morpholino oligomers: Methods and protocols (pp. 115–122). Humana Press. https://doi.org/10.1007/978-1-4939-6817-6_10

Chapter  Google Scholar 

Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods, 44(2), 121–129. https://doi.org/10.1016/S0167-7012(00)00241-4

Article  PubMed  CAS  Google Scholar 

Liew, H. S., Mai, C., Zulkefeli, M., Madheswaran, T., Kiew, L. V., Pua, L. J. W., Hii, L. W., Lim, W. M., & Low, M. L. (2022). Novel gemcitabine-RE(I) bisquinolinyl complex combinations and formulations with liquid crystalline nanoparticles for pancreatic cancer photodynamic therapy. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2022.903210

Article  PubMed 

Comments (0)

No login
gif