Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11, 1946. https://doi.org/10.3390/healthcare11131946
Article PubMed PubMed Central Google Scholar
Ahmed, S. K., Hussein, S., Qurbani, K., Ibrahim, R. H., Fareeq, A., Mahmood, K. A., & Mohamed, M. G. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine Surgery and Public Health, 2, 100081. https://doi.org/10.1016/j.glmedi.2024.100081
Kolarikova, M., Hosikova, B., Dilenko, H., Barton-Tomankova, K., Valkova, L., Bajgar, R., Malina, L., & Kolarova, H. (2023). Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal Research Reviews, 43, 717–774. https://doi.org/10.1002/med.21935
Article CAS PubMed Google Scholar
Yuan, B., Liu, J., Guan, R., Jin, C., Ji, L., & Chao, H. (2019). Endoplasmic reticulum targeted cyclometalated iridium(iii) complexes as efficient photodynamic therapy photosensitizers. Dalton Transactions, 48, 6408–6415. https://doi.org/10.1039/c9dt01072f
Article CAS PubMed Google Scholar
Simões, J. C. S., Sarpaki, S., Papadimitroulas, P., Therrien, B., & Loudos, G. (2020). Conjugated photosensitizers for imaging and PDT in cancer research. Journal of Medicinal Chemistry, 63, 14119–14150. https://doi.org/10.1021/acs.jmedchem.0c00047
Article CAS PubMed Google Scholar
Agazzi, M. L., Ballatore, M. B., Durantini, A. M., Durantini, E. N., & Tomé, A. C. (2019). BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. Photochem Photobiol C: Photochem Rev, 40, 21–48. https://doi.org/10.1016/j.jphotochemrev.2019.04.001
Tursynova, N., Helena Maliszewska, I., Jóźwiak, K., Sokolnicki, J., Kochel, A., Lipkowski, P., Bartkiewicz, S., & Filarowski, A. (2024). The photoinactivation of pathogenic bacteria using synthesized benzodioxole-BODIPY dyes. Journal of Photochemistry and Photobiology. A, Chemistry, 450, 115474. https://doi.org/10.1016/j.jphotochem.2024.115474
Gonzalez Lopez, E. J., Sarotti, A. M., Martínez, S. R., Macor, L. P., Durantini, J. E., Renfige, M., Gervaldo, M. A., Otero, L. A., Durantini, A. M., Durantini, E. N., & Heredia, D. A. (2022). BOPHY-Fullerene C60 dyad as a photosensitizer for antimicrobial photodynamic therapy. Chemistry--A European Journal, 28, e202103884. https://doi.org/10.1002/chem.202103884
Article CAS PubMed Google Scholar
Heredia, D. A., Durantini, A. M., Durantini, J. E., & Durantini, E. N. (2022). Fullerene C60 derivatives as antimicrobial photodynamic agents. Photochem Photobiol C: Photochem Rev, 51, 100471. https://doi.org/10.1016/j.jphotochemrev.2021.100471
Hamblin, M. R., & Abrahamse, H. (2020). Oxygen-Independent antimicrobial photoinactivation: Type III photochemical mechanism? Antibiotics, 9, 53. https://doi.org/10.3390/antibiotics9020053
Article CAS PubMed PubMed Central Google Scholar
Yan, E., Kwek, G., Qing, N. S., Lingesh, S., & Xing, B. (2023). Antimicrobial photodynamic therapy for the remote eradication of bacteria. Chempluschem, 88, e202300009. https://doi.org/10.1002/cplu.202300009
Article CAS PubMed Google Scholar
Marasini, S., Leanse, L. G., & Dai, T. (2021). Can microorganisms develop resistance against light based anti-infective agents? Advanced Drug Delivery Reviews, 175, 113822. https://doi.org/10.1016/j.addr.2021.05.032
Article CAS PubMed Google Scholar
Agazzi, M. L., Almodovar, V. A. S., Gsponer, N. S., Bertolotti, S., Tomé, A. C., & Durantini, E. N. (2020). Diketopyrrolopyrrole-fullerene C60 architectures as highly efficient heavy atom-free photosensitizers: Synthesis, photophysical properties and photodynamic activity. Organic & Biomolecular Chemistry, 18, 1449–1461. https://doi.org/10.1039/c9ob02487e
Schmitt, J., Heitz, V., Sour, A., Bolze, F., Kessler, P., Flamigni, L., Ventura, B., Bonnet, C. S., & Tóth, É. (2016). A theranostic agent combining a Two-Photon-Absorbing photosensitizer for photodynamic therapy and a Gadolinium(III) complex for MRI detection. Chemistry--A European Journal, 22, 2775–2786. https://doi.org/10.1002/chem.201503433
Article CAS PubMed Google Scholar
Pérez, M. E., Almodovar, V. A. S., Durantini, J. E., Gsponer, N. S., Durantini, A. M., Tomé, A. C., & Durantini, E. N. (2023). Diketopyrrolopyrrole derivatives as photosensitizing agents against Staphylococcus aureus. Photochemistry and Photobiology, 99, 1131–1141. https://doi.org/10.1111/php.13741
Article CAS PubMed Google Scholar
Costa, L. D., Vieira, C., Hackbarth, S., Neves, M. G. P. M. S., Almeida, A., Faustino, M. A. F., & Tomé, A. C. (2026). Photodynamic inactivation of Escherichia coli and Staphylococcus aureus by cationic Diketopyrrolopyrroles. Dyes and Pigments, 244, 113101. https://doi.org/10.1016/j.dyepig.2025.113101
Shankar, N., Soe, P. M., & Tam, C. C. (2020). Prevalence and risk of acquisition of methicillin-resistant Staphylococcus aureus among households: A systematic review. International Journal of Infectious Diseases : Ijid : official Publication of the International Society for Infectious Diseases, 92, 105–113. https://doi.org/10.1016/j.ijid.2020.01.008
Article CAS PubMed Google Scholar
Zhou, S., Rao, Y., Li, J., Huang, Q., & Rao, X. (2022). Staphylococcus aureus small-colony variants: Formation, infection, and treatment. Microbiological Research, 260, 127040. https://doi.org/10.1016/j.micres.2022.127040
Article CAS PubMed Google Scholar
Rojas, A., Palacios-Baena, Z. R., López-Cortés, L. E., & Rodríguez-Baño, J. (2019). Rates, predictors and mortality of community-onset bloodstream infections due to Pseudomonas aeruginosa: Systematic review and meta-analysis. Clinical Microbiology & Infection, 25, 964–970. https://doi.org/10.1016/j.cmi.2019.04.005
Zhou, F., Lin, S., Zhang, J., Kong, Z., Tan, B. K., Hamzah, S. S., & Hu, J. (2022). Enhancement of photodynamic bactericidal activity of Curcumin against Pseudomonas aeruginosa using polymyxin B. Photodiagnosis Photodyn Ther, 37, 102677. https://doi.org/10.1016/j.pdpdt.2021.102677
Article CAS PubMed Google Scholar
Almodovar, V. A. S., & Tomé, A. C. (2024). A new platform for the synthesis of Diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions. Beilstein Journal of Organic Chemistry, 20, 1933–1939. https://doi.org/10.3762/bjoc.20.169
Article CAS PubMed PubMed Central Google Scholar
Vieira, C., Santos, A., Mesquita, M. Q., Gomes, A. T. P. C., Neves, M. G. P. M. S., Faustino, M. A. F., & Almeida, A. (2019). Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. Journal of Porphyrins and Phthalocyanines, 23, 534–545. https://doi.org/10.1142/S1088424619500408
Vieira, A., Silva, Y. J., Cunha, Â., Gomes, N. C. M., Ackermann, H. W., & Almeida, A. (2012). Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin Infections: In vitro and ex vivo experiments. European Journal of Clinical Microbiology and Infectious Diseases, 31, 3241–3249. https://doi.org/10.1007/s10096-012-1691-x
Article CAS PubMed Google Scholar
Vieira, C., Gomes, A. T. P. C., Mesquita, M. Q., Moura, N. M. M., Neves, M. G. P. M. S., Faustino, M. A. F., & Almeida, A. (2018). An insight into the potentiation effect of potassium iodide on aPDT efficacy. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02665
J.C.J.M.D, S., Menezes, M. A. F., Faustino, K. T., de Oliveira, M. P., Uliana, V. F., Ferreira, S., Hackbarth, B., Röder, T., Teixeira Tasso, T., Furuyama, N., Kobayashi, A. M. S., Silva, M. G. P. M. S., Neves, J. A. S., & Cavaleiro (2014). Synthesis of new Chlorin e 6 trimethyl and Protoporphyrin IX dimethyl ester derivatives and their photophysical and electrochemical characterizations. Chemistry--A European Journal, 20, 13644–13655. https://doi.org/10.1002/chem.201403214
Kuwabara, J., Yamagata, T., & Kanbara, T. (2010). Solid-state structure and optical properties of highly fluorescent Diketopyrrolopyrrole derivatives synthesized by cross-coupling reaction. Tetrahedron, 66, 3736–3741. https://doi.org/10.1016/j.tet.2010.03.067
Huang, L., El-Hussein, A., Xuan, W., & Hamblin, M. R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. Journal of Photochemistry and Photobiology B, 178, 277–286. https://doi.org/10.1016/j.jphotobiol.2017.10.036
Alves, E., Costa, L., Carvalho, C. M., Tomé, J. P., Faustino, M. A., Neves, M. G., Tomé, A. C., Cavaleiro, J. A., Cunha, Â., Almeida, A. (2009). Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiology 9, 70.
Tavares, A., Dias, S. R. S., Carvalho, C. M. B., Faustino, M. A. F., Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, Â., Gomes, N. C. M., Alves, E., & Almeida, A. (2009). Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochemical & Photobiological Sciences 10, 1659–1669. https://doi.org/10.1039/c1pp05097d.
Du, Y., Liu, X., Wang, Q., Yu, L., Chu, L., & Sun, M. (2022). Metal free benzothiadiazole-diketopyrrolopyrrole-based conjugated polymer/g-C3N4 photocatalyst for enhanced sterilization and degradation in visible to near-infrared region. Journal of Colloid and Interface Science, 608, 103–113.
Comments (0)