Jonas OB, Irwin A, Berthe FCJ, Le Gall FG, Marquez PV. Drug-Resistant Infection: A Threat to Our Economic Future. 2017. p. 1–172. https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future.
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501. https://doi.org/10.3934/microbiol.2018.3.482.
Article CAS PubMed PubMed Central Google Scholar
Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:1–16. https://doi.org/10.1128/AAC.02340-16.
Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7. https://doi.org/10.1038/nbt1267.
Article CAS PubMed Google Scholar
Wang S, Fan L, Pan H, Li Y, Qiu Y, Lu Y. Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development. Front Mar Sci. 2023;9. https://doi.org/10.3389/fmars.2022.1112595.
Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82. https://doi.org/10.1128/IAI.00318-08.
Article CAS PubMed PubMed Central Google Scholar
Ramezanzadeh M, Saeedi N, Mesbahfar E, Farrokh P, Salimi F, Rezaei A. Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity. Biochimie. 2021;181:42–51. https://doi.org/10.1016/J.BIOCHI.2020.11.020.
Article CAS PubMed Google Scholar
Wang Y, Zhu G, Wang W, Zhang Y, Zhu Y, Wang J, et al. Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg Med Chem Lett. 2023;83:129176 https://doi.org/10.1016/J.BMCL.2023.129176.
Article CAS PubMed Google Scholar
Habibie A, Raharjo TJ, Swasono RT, Retnaningrum E. Antibacterial activity of active peptide from marine macroalgae Chondrus crispus protein hydrolysate against Staphylococcus aureus. Pharmacia. 2023;70. https://doi.org/10.3897/pharmacia.70.e112215.
Zhang J, Chu A, Ouyang X, Li B, Yang P, Ba Z, et al. Rationally designed highly amphipathic antimicrobial peptides demonstrating superior bacterial selectivity relative to the corresponding alpha-helix peptide. Eur J Med Chem. 2025;286:117310 https://doi.org/10.1016/j.ejmech.2025.117310.
Article CAS PubMed Google Scholar
Han Y, Zhang M, Lai R, Zhang Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides. 2021;146:170666 https://doi.org/10.1016/j.peptides.2021.170666.
Article CAS PubMed Google Scholar
Scholtz JM, Qian H, Robbins VH, Baldwin RL. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993;32:9668–76. https://doi.org/10.1021/bi00088a019.
Article CAS PubMed Google Scholar
Luo P, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997;36:8413–21. https://doi.org/10.1021/bi9707133.
Article CAS PubMed Google Scholar
Pereira AF, Piccoli V, Martínez L. Trifluoroethanol direct interactions with protein backbones destabilize a-helices. J Mol Liq. 2022;365. https://doi.org/10.1016/j.molliq.2022.120209.
Dinic J, Tirrell MV. Effects of charge sequence pattern and lysine-to-arginine substitution on the structural stability of bioinspired polyampholytes. Biomacromolecules. 2024;25:2838–51. https://doi.org/10.1021/acs.biomac.4c00002.
Article CAS PubMed PubMed Central Google Scholar
Lunkad R, Murmiliuk A, Tosner Z, Stepanek M, Kosovan P. Role of pK(A) in charge regulation and conformation of various peptide sequences. Polymers (Basel). 2021;13:214 https://doi.org/10.3390/polym13020214.
Article CAS PubMed Google Scholar
Chen CH, Melo MC, Berglund N, Khan A, de la Fuente-Nunez C, Ulmschneider JP, et al. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Curr Opin Struct Biol. 2020;61:160–6. https://doi.org/10.1016/j.sbi.2019.12.021.
Article CAS PubMed Google Scholar
Honda S, Kobayashi N, Munekata E, Uedaira H. Fragment reconstitution of a small protein: folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G. Biochemistry. 1999;38:1203–13. https://doi.org/10.1021/bi982271g.
Article CAS PubMed Google Scholar
Kojima S, Kuriki Y, Sato Y, Arisaka F, Kumagai I, Takahashi S, et al. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements. Biochim Biophys Acta. 1996;1294:129–37. https://doi.org/10.1016/0167-4838(96)00003-9.
Fezoui Y, Teplow DB. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem. 2002;277:36948–54. https://doi.org/10.1074/jbc.M204168200.
Article CAS PubMed Google Scholar
Marqusee S, Robbins VH, Baldwin RL. Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci USA. 1989;86:5286–90. https://doi.org/10.1073/pnas.86.14.5286.
Article CAS PubMed PubMed Central Google Scholar
Tesei G, Vazdar M, Jensen MR, Cragnell C, Mason PE, Heyda J, et al. Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc Natl Acad Sci USA. 2017;114:11428–33. https://doi.org/10.1073/pnas.1712078114.
Article CAS PubMed PubMed Central Google Scholar
Guo M, Gorman PM, Rico M, Chakrabartty A, Laurents DV. Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides. FEBS Lett. 2005;579:3574–8. https://doi.org/10.1016/j.febslet.2005.05.036.
Article CAS PubMed Google Scholar
Armen R, Alonso DO, Daggett V. The role of alpha-, 3(10)-, and pi-helix in helix–>coil transitions. Protein Sci. 2003;12:1145–57. https://doi.org/10.1110/ps.0240103.
Article CAS PubMed PubMed Central Google Scholar
Allain F, Mareuil F, Ménager H, Nilges M, Bardiaux B. ARIAweb: A server for automated NMR structure calculation. Nucleic Acids Res. 2020;48:W41–W7. https://doi.org/10.1093/nar/gkaa362.
Article CAS PubMed PubMed Central Google Scholar
Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int J Mol Sci. 2020;21:1–15. https://doi.org/10.3390/ijms21249692.
Schmidt TF, Riske KA, Caseli L, Salesse C. Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophys Chem. 2021;271:106553. https://doi.org/10.1016/j.bpc.2021.106553.
Article CAS PubMed Google Scholar
Kabelka I, Vacha R. Advances in molecular understanding of alpha-helical membrane-active peptides. Acc Chem Res. 2021;54:2196–204. https://doi.org/10.1021/acs.accounts.1c00047.
Article CAS PubMed Google Scholar
Lou T, Zhuang X, Chang J, Gao Y, Bai X. Effect of surface-immobilized states of antimicrobial peptides on their ability to disrupt bacterial cell membrane structure. J Funct Biomater. 2024;15:315 https://doi.org/10.3390/jfb15110315.
Article CAS PubMed PubMed Central Google Scholar
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14:1750–66. https://doi.org/10.1016/j.jiph.2021.10.020.
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B. 2021;11:2609–44.
Comments (0)