Improving conformational stability and bacterial membrane interactions of antimicrobial peptides with amphipathic helical structure

Jonas OB, Irwin A, Berthe FCJ, Le Gall FG, Marquez PV. Drug-Resistant Infection: A Threat to Our Economic Future. 2017. p. 1–172. https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future.

Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501. https://doi.org/10.3934/microbiol.2018.3.482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:1–16. https://doi.org/10.1128/AAC.02340-16.

Article  Google Scholar 

Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7. https://doi.org/10.1038/nbt1267.

Article  CAS  PubMed  Google Scholar 

Wang S, Fan L, Pan H, Li Y, Qiu Y, Lu Y. Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development. Front Mar Sci. 2023;9. https://doi.org/10.3389/fmars.2022.1112595.

Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82. https://doi.org/10.1128/IAI.00318-08.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramezanzadeh M, Saeedi N, Mesbahfar E, Farrokh P, Salimi F, Rezaei A. Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity. Biochimie. 2021;181:42–51. https://doi.org/10.1016/J.BIOCHI.2020.11.020.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhu G, Wang W, Zhang Y, Zhu Y, Wang J, et al. Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg Med Chem Lett. 2023;83:129176 https://doi.org/10.1016/J.BMCL.2023.129176.

Article  CAS  PubMed  Google Scholar 

Habibie A, Raharjo TJ, Swasono RT, Retnaningrum E. Antibacterial activity of active peptide from marine macroalgae Chondrus crispus protein hydrolysate against Staphylococcus aureus. Pharmacia. 2023;70. https://doi.org/10.3897/pharmacia.70.e112215.

Zhang J, Chu A, Ouyang X, Li B, Yang P, Ba Z, et al. Rationally designed highly amphipathic antimicrobial peptides demonstrating superior bacterial selectivity relative to the corresponding alpha-helix peptide. Eur J Med Chem. 2025;286:117310 https://doi.org/10.1016/j.ejmech.2025.117310.

Article  CAS  PubMed  Google Scholar 

Han Y, Zhang M, Lai R, Zhang Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides. 2021;146:170666 https://doi.org/10.1016/j.peptides.2021.170666.

Article  CAS  PubMed  Google Scholar 

Scholtz JM, Qian H, Robbins VH, Baldwin RL. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993;32:9668–76. https://doi.org/10.1021/bi00088a019.

Article  CAS  PubMed  Google Scholar 

Luo P, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997;36:8413–21. https://doi.org/10.1021/bi9707133.

Article  CAS  PubMed  Google Scholar 

Pereira AF, Piccoli V, Martínez L. Trifluoroethanol direct interactions with protein backbones destabilize a-helices. J Mol Liq. 2022;365. https://doi.org/10.1016/j.molliq.2022.120209.

Dinic J, Tirrell MV. Effects of charge sequence pattern and lysine-to-arginine substitution on the structural stability of bioinspired polyampholytes. Biomacromolecules. 2024;25:2838–51. https://doi.org/10.1021/acs.biomac.4c00002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunkad R, Murmiliuk A, Tosner Z, Stepanek M, Kosovan P. Role of pK(A) in charge regulation and conformation of various peptide sequences. Polymers (Basel). 2021;13:214 https://doi.org/10.3390/polym13020214.

Article  CAS  PubMed  Google Scholar 

Chen CH, Melo MC, Berglund N, Khan A, de la Fuente-Nunez C, Ulmschneider JP, et al. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Curr Opin Struct Biol. 2020;61:160–6. https://doi.org/10.1016/j.sbi.2019.12.021.

Article  CAS  PubMed  Google Scholar 

Honda S, Kobayashi N, Munekata E, Uedaira H. Fragment reconstitution of a small protein: folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G. Biochemistry. 1999;38:1203–13. https://doi.org/10.1021/bi982271g.

Article  CAS  PubMed  Google Scholar 

Kojima S, Kuriki Y, Sato Y, Arisaka F, Kumagai I, Takahashi S, et al. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements. Biochim Biophys Acta. 1996;1294:129–37. https://doi.org/10.1016/0167-4838(96)00003-9.

Article  PubMed  Google Scholar 

Fezoui Y, Teplow DB. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem. 2002;277:36948–54. https://doi.org/10.1074/jbc.M204168200.

Article  CAS  PubMed  Google Scholar 

Marqusee S, Robbins VH, Baldwin RL. Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci USA. 1989;86:5286–90. https://doi.org/10.1073/pnas.86.14.5286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesei G, Vazdar M, Jensen MR, Cragnell C, Mason PE, Heyda J, et al. Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc Natl Acad Sci USA. 2017;114:11428–33. https://doi.org/10.1073/pnas.1712078114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo M, Gorman PM, Rico M, Chakrabartty A, Laurents DV. Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides. FEBS Lett. 2005;579:3574–8. https://doi.org/10.1016/j.febslet.2005.05.036.

Article  CAS  PubMed  Google Scholar 

Armen R, Alonso DO, Daggett V. The role of alpha-, 3(10)-, and pi-helix in helix–>coil transitions. Protein Sci. 2003;12:1145–57. https://doi.org/10.1110/ps.0240103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allain F, Mareuil F, Ménager H, Nilges M, Bardiaux B. ARIAweb: A server for automated NMR structure calculation. Nucleic Acids Res. 2020;48:W41–W7. https://doi.org/10.1093/nar/gkaa362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int J Mol Sci. 2020;21:1–15. https://doi.org/10.3390/ijms21249692.

Article  CAS  Google Scholar 

Schmidt TF, Riske KA, Caseli L, Salesse C. Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophys Chem. 2021;271:106553. https://doi.org/10.1016/j.bpc.2021.106553.

Article  CAS  PubMed  Google Scholar 

Kabelka I, Vacha R. Advances in molecular understanding of alpha-helical membrane-active peptides. Acc Chem Res. 2021;54:2196–204. https://doi.org/10.1021/acs.accounts.1c00047.

Article  CAS  PubMed  Google Scholar 

Lou T, Zhuang X, Chang J, Gao Y, Bai X. Effect of surface-immobilized states of antimicrobial peptides on their ability to disrupt bacterial cell membrane structure. J Funct Biomater. 2024;15:315 https://doi.org/10.3390/jfb15110315.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14:1750–66. https://doi.org/10.1016/j.jiph.2021.10.020.

Article  PubMed  Google Scholar 

Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B. 2021;11:2609–44.

Comments (0)

No login
gif