Alam MS (2018) Proximity ligation assay (PLA). Curr Protoc Immunol 123:e58. https://doi.org/10.1002/cpim.58
Article CAS PubMed PubMed Central Google Scholar
Anastacio MM, Kanter EM, Makepeace C, Keith AD, Zhang H, Schuessler RB, Nichols CG, Lawton JS (2013) Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Ann Thorac Surg 95:2042–2050. https://doi.org/10.1016/j.athoracsur.2013.03.035
Article PubMed PubMed Central Google Scholar
Arroyo A, Kagan VE, Tyurin VA, Burgess JR, de Cabo R, Navas P, Villalba JM (2000) NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. Antioxid Redox Signal 2:251–262. https://doi.org/10.1089/ars.2000.2.2-251
Article CAS PubMed Google Scholar
Awad K, Sayed A, Banach M (2022) Coenzyme Q10 reduces infarct size in animal models of myocardial ischemia-reperfusion injury: a meta-analysis and summary of underlying mechanisms. Front Cardiovasc Med 9:857364. https://doi.org/10.3389/fcvm.2022.857364
Article CAS PubMed PubMed Central Google Scholar
Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM (2018) Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 3. https://doi.org/10.1172/jci.insight.121900
Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. https://doi.org/10.1016/j.cardiores.2005.04.014
Article CAS PubMed Google Scholar
Boengler K, Heusch G, Schulz R (2006) Connexin 43 and ischemic preconditioning: effects of age and disease. Exp Gerontol 41:485–488. https://doi.org/10.1016/j.exger.2006.01.011
Article CAS PubMed Google Scholar
Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769. https://doi.org/10.1152/ajpheart.01071.2006
Article CAS PubMed Google Scholar
Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. https://doi.org/10.1111/j.1582-4934.2011.01516.x
Article CAS PubMed PubMed Central Google Scholar
Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. https://doi.org/10.1007/s00395-009-0007-5
Article CAS PubMed Google Scholar
Boengler K, Ungefug E, Heusch G, Leybaert L, Schulz R (2013) Connexin 43 impacts on mitochondrial potassium uptake. Front Pharmacol 4:73. https://doi.org/10.3389/fphar.2013.00073
Article PubMed PubMed Central Google Scholar
Bou-Teen D, Fernandez-Sanz C, Miro-Casas E, Nichtova Z, Bonzon-Kulichenko E, Casós K, Inserte J, Rodriguez-Sinovas A, Benito B, Sheu SS, Vázquez J, Ferreira-González I, Ruiz-Meana M (2022) Defective dimerization of FoF1-ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell 21:e13564. https://doi.org/10.1111/acel.13564
Article CAS PubMed PubMed Central Google Scholar
Burger N, Logan A, Prime TA, Mottahedin A, Caldwell ST, Krieg T, Hartley RC, James AM, Murphy MP (2020) A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radic Biol Med 147:37–47. https://doi.org/10.1016/j.freeradbiomed.2019.11.028
Article CAS PubMed PubMed Central Google Scholar
Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537. https://doi.org/10.1161/CIRCRESAHA.114.300559
Article CAS PubMed PubMed Central Google Scholar
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. https://doi.org/10.1038/nature13909
Article CAS PubMed PubMed Central Google Scholar
Depre C, Vatner SF (2007) Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12:307–317. https://doi.org/10.1007/s10741-007-9040-3
Article CAS PubMed Google Scholar
Diez ER, Sanchez JA, Prado NJ, Ponce Zumino AZ, Garcia-Dorado D, Miatello RM, Rodriguez-Sinovas A (2019) Ischemic postconditioning reduces reperfusion arrhythmias by adenosine receptors and protein kinase C activation but is independent of K(ATP) channels or connexin 43. Int J Mol Sci 20:5927. https://doi.org/10.3390/ijms20235927
Article CAS PubMed PubMed Central Google Scholar
Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nunez E, Inserte J, Vazquez J, Garcia-Dorado D (2015) Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb Haemost 113. https://doi.org/10.1160/TH14-10-0901
Gadicherla AK, Wang N, Bulic M, Agullo-Pascual E, Lissoni A, De Smet M, Delmar M, Bultynck G, Krysko DV, Camara A, Schluter KD, Schulz R, Kwok WM, Leybaert L (2017) Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 112:27. https://doi.org/10.1007/s00395-017-0618-1
Article CAS PubMed Google Scholar
Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401. https://doi.org/10.1016/j.cardiores.2003.11.039
Article CAS PubMed Google Scholar
Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180. https://doi.org/10.1093/cvr/cvs116
Article CAS PubMed Google Scholar
Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551. https://doi.org/10.1016/j.redox.2015.08.020
Article CAS PubMed PubMed Central Google Scholar
Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141. https://doi.org/10.1016/j.yjmcc.2014.08.018
Article CAS PubMed Google Scholar
Hano O, Thompson-Gorman SL, Zweier JL, Lakatta EG (1994) Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+ overload during postischemic reperfusion. Am J Physiol 266:H2174-2181. https://doi.org/10.1152/ajpheart.1994.266.6.H2174
Article CAS PubMed Google Scholar
Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. https://doi.org/10.1161/01.RES.0000181171.65293.65
Article CAS PubMed Google Scholar
Heusch G, Buchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. https://doi.org/10.1007/ss00395-006-0589-0
Article CAS PubMed Google Scholar
Heusch G, Andreadou I, Bell R, Bertero E, Botker H-E, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F (2023) Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 67:102894. https://doi.org/10.1016/j.redox.2023.102894
Article CAS PubMed PubMed Central Google Scholar
Hirschhauser C, Lissoni A, Gorge PM, Lampe PD, Heger J, Schluter KD, Leybaert L, Schulz R, Boengler K (2021) Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 116:21. https://doi.org/10.1007/s00395-021-00861-z
Article CAS PubMed PubMed Central Google Scholar
Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421. https://doi.org/10.1038/nrm3801
Article CAS PubMed Google Scholar
Jarmuszkiewicz W, Dominiak K, Galganski L, Galganska H, Kicinska A, Majerczak J, Zoladz JA (2020) Lung mitochondria adaptation to endurance training in rats. Free Radic Biol Med 161:163–174. https://doi.org/10.1016/j.freeradbiomed.2020.10.011
Article CAS PubMed Google Scholar
Kelly RF, Sluiter W, McFalls EO (2008) Hibernating myocardium: is the program to survive a pathway to failure? Circ Res 102:3–5. https://doi.org/10.1161/CIRCRESAHA.107.168278
Comments (0)